We investigate the structural relaxation of a soft-sphere liquid quenched isochorically (ϕ = 0.7) and instantaneously to different temperatures T above and below the glass transition. For this, we combine extensive Brownian dynamics simulations and theoretical calculations based on the non-equilibrium self-consistent generalized Langevin equation (NE-SCGLE) theory.
View Article and Find Full Text PDFThe fundamental understanding of the dynamic and transport properties of liquids is crucial for the better processing of most materials. The usefulness of this understanding increases when it involves general scaling rules, such as the concept of the hard-sphere dynamic universality class, which provides a unifying scaling of the dynamics of soft-sphere repulsive systems. A relevant question is how far this concept extends to systems that also involve attractive interactions.
View Article and Find Full Text PDFIn this paper, we present a Monte Carlo simulation study on the structure of the electrical double layer around a spherical colloid surrounded by a binary electrolyte composed of spherical and non-spherical ions. Results are provided for the radial distribution functions between the colloid and ions, the orientation correlations between the colloid and non-spherical particles, and the integrated charge. Work is reported mainly for non-spherical particles modeled as spherocylinders, although a particular comparison is made between spherocylindrical particles and dimers.
View Article and Find Full Text PDFMost theoretical and simulation studies on charged suspensions are at infinite dilution and are focused on the electrolyte structure around one or two isolated particles. Some classic experimental studies with latex particle solutions exhibit interesting phenomenology which imply very-long-range correlations. Here, we apply an integral equation theory to a model charged macroion suspension, at finite volume fraction, and find an amplitude-modulated charge inversion structure, with outsized amplitudes and of very-long-range extension.
View Article and Find Full Text PDFThe capacitive compactness has been introduced very recently [G. I. Guerrero-García et al.
View Article and Find Full Text PDFThe spatial extension of the ionic cloud neutralizing a charged colloid or an electrode is usually characterized by the Debye length associated with the supporting charged fluid in the bulk. This spatial length arises naturally in the linear Poisson-Boltzmann theory of point charges, which is the cornerstone of the widely used Derjaguin-Landau-Verwey-Overbeek formalism describing the colloidal stability of electrified macroparticles. By definition, the Debye length is independent of important physical features of charged solutions such as the colloidal charge, electrostatic ion correlations, ionic excluded volume effects, or specific short-range interactions, just to mention a few.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
October 2013
We perform systematic simulation experiments on model systems with soft-sphere repulsive interactions to test the predicted dynamic equivalence between soft-sphere liquids with similar static structure. For this we compare the simulated dynamics (mean squared displacement, intermediate scattering function, α-relaxation time, etc.) of different soft-sphere systems, between them and with the hard-sphere liquid.
View Article and Find Full Text PDFUsing the generalized Langevin equation formalism and the process of contraction of the description we derive a general memory function equation for the thermal fluctuations of the local density of a simple atomic liquid. From the analysis of the long-time limit of this equation, a striking equivalence is suggested between the long-time dynamics of the atomic liquid and the dynamics of the corresponding Brownian liquid. This dynamic equivalence is confirmed here by comparing molecular and Brownian dynamics simulations of the self-intermediate scattering function and the long-time self-diffusion coefficient for the hard-sphere liquid.
View Article and Find Full Text PDFCoalescence processes in double emulsions, water-in-oil-in-water, are studied by optical microscopy. The time evolution of such systems is determined by the interplay of two coalescence processes, namely, between inner water droplets and between the inner water droplets and the continuous external water phase. The predominance of one of those processes over the other, regulated by the relative amount of hydrophilic and lipophilic surfactants, leads to different evolutions of the system.
View Article and Find Full Text PDFThe ionic adsorption around a weakly charged spherical colloid, immersed in size-asymmetric 1:1 and 2:2 salts, is studied. We use the primitive model (PM) of an electrolyte to perform Monte Carlo simulations as well as theoretical calculations by means of the hypernetted chain/mean spherical approximation (HNC/MSA) and the unequal-radius modified Gouy-Chapman (URMGC) integral equations. Structural quantities such as the radial distribution functions, the integrated charge, and the mean electrostatic potential are reported.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
August 2009
Monte Carlo simulations of a spherical macroion, surrounded by a size-asymmetric electrolyte in the primitive model, were performed. We considered 1:1 and 2:2 salts with a size ratio of 2 (i.e.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
November 2007
We study the structure of charged colloidal suspensions under confinement and determine a state diagram for the occurrence of electrostatic adsorption onto the confining walls, an effect that results in the accumulation of particles on the bounding surfaces and that could be relevant in experiments. We use Monte Carlo simulations to quantify this structural transition and perform theoretical calculations based on integral equations. Overall, our results provide a guide for experimentalists dealing with charged colloidal systems to determine the relevance of this purely electrostatic effect.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
October 2007
This paper presents a recently developed theory of colloid dynamics as an alternative approach to the description of phenomena of dynamic arrest in monodisperse colloidal systems. Such theory, referred to as the self-consistent generalized Langevin equation (SCGLE) theory, was devised to describe the tracer and collective diffusion properties of colloidal dispersions in the short- and intermediate-time regimes. Its self-consistent character, however, introduces a nonlinear dynamic feedback, leading to the prediction of dynamic arrest in these systems, similar to that exhibited by the well-established mode coupling theory of the ideal glass transition.
View Article and Find Full Text PDFBrownian dynamics simulations were performed to study the structure of polyelectrolyte complexes formed by two flexible, oppositely charged polyelectrolyte chains. The distribution of monomers in the complex as well as the radius of gyration and structure factor of complexes and individual polyelectrolytes are reported. These structural properties were calculated for polyelectrolyte chains with equal number of monomers, keeping constant the bond length of the negative chain and increasing the bond length of the positive chain.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
May 2003
The pair correlation function g(r) between like-charged colloidal particles in quasi-two-dimensional geometries is measured by optical microscopy for a wide range of particle concentrations and various degrees of confinement. The effective pair potential u(r) is obtained by deconvoluting g(r) via Monte Carlo computer simulations. Our results confirm the existence of a long-range attractive component of u(r) and the appearance of an extra attractive term under stringent confinement.
View Article and Find Full Text PDFPhys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics
October 2000
In this work we present a study of the local structure of a model colloidal suspension highly confined inside a cylindrical pore. Such a study is based in Monte Carlo computer simulations, using the repulsive part of the Derjaguin-Landau-Verwey-Overbeek potential as the pair interaction between particles. The structural properties calculated here are the concentration profile n(rho), the axial pair correlation function g(z), and the axial-angular pair correlation function g(z,straight phi).
View Article and Find Full Text PDF