Publications by authors named "Chavanon Apinorasethkul"

Purpose: To evaluate organ at risk (OAR) auto-segmentation in the head and neck region of computed tomography images using two different commercially available deep-learning-based auto-segmentation (DLAS) tools in a single institutional clinical applications.

Methods: Twenty-two OARs were manually contoured by clinicians according to published guidelines on planning computed tomography (pCT) images for 40 clinical head and neck cancer (HNC) cases. Automatic contours were generated for each patient using two deep-learning-based auto-segmentation models-Manteia AccuContour and MIM ProtégéAI.

View Article and Find Full Text PDF

Contouring (segmentation) of Organs at Risk (OARs) in medical images is required for accurate radiation therapy (RT) planning. In current clinical practice, OAR contouring is performed with low levels of automation. Although several approaches have been proposed in the literature for improving automation, it is difficult to gain an understanding of how well these methods would perform in a realistic clinical setting.

View Article and Find Full Text PDF

Segmentation of organs at risk (OARs) is a key step during the radiation therapy (RT) treatment planning process. Automatic anatomy recognition (AAR) is a recently developed body-wide multiple object segmentation approach, where segmentation is designed as two dichotomous steps: object recognition (or localization) and object delineation. Recognition is the high-level process of determining the whereabouts of an object, and delineation is the meticulous low-level process of precisely indicating the space occupied by an object.

View Article and Find Full Text PDF

Contouring of the organs at risk is a vital part of routine radiation therapy planning. For the head and neck (H&N) region, this is more challenging due to the complexity of anatomy, the presence of streak artifacts, and the variations of object appearance. In this paper, we describe the latest advances in our Automatic Anatomy Recognition (AAR) approach, which aims to automatically contour multiple objects in the head and neck region on planning CT images.

View Article and Find Full Text PDF