Aim: This systematic review and meta-analysis aimed to assess the safety and efficacy of Baduanjin, a traditional Chinese exercise (TCM), for reducing depression and anxiety in individuals suffering from coronavirus disease 2019 (COVID-19).
Methods: Nineteen databases were searched from their inception through August 2024 to gather data for this study. The focus of this study was randomized controlled trials (RCTs) in which Baduanjin was administered for the treatment of COVID-19 patients with depression and anxiety.
Vascular endothelium plays a crucial role in vascular homeostasis and tissue fluid balance. To target endothelium for robust genome editing, we developed poly(ethylene glycol) methyl ether-block-poly(lactide-co-glycolide) (PEG-b-PLGA) copolymer-based nanoparticle formulated with polyethyleneimine. A single i.
View Article and Find Full Text PDFBackground: Orbital lymphomas are primarily non-Hodgkin type and can originate from the eyelids, extraocular muscles, soft tissue orbital adnexa, conjunctiva, or lacrimal glands. Orbital malignancies often represent a diagnostic dilemma for clinicians given their varying and atypical presentations.
Objective: To report a case of orbital lymphoma mimicking orbital cellulitis.
Purpose: To report post typhoid fever neuroretinitis with Serous Retinal Detachment and choroidal involvement.
Observation: Patients with diminished vision post typhoid fever can present with neuroretinitis with serous retinal detachment.
Conclusion And Importance: With help from noninvasive imaging such as optical coherence tomography angiography(OCTA) and Deep Range Imaging(DRI), we were able to conclude choroidal involvement - which has not been discussed in literatures yet.
The pulmonary route has long been used for drug administration for both local and systemic treatment. It possesses several advantages, which can be categorized into physiological, i.e.
View Article and Find Full Text PDFArtemisinin (ART) is well known as an antimalarial drug, and it can also be used to treat inflammation as well as cancer. Although many researchers have reported the antitumor activity of ART, most of these studies were investigated in vitro. In addition, ART is sparingly soluble in water, limiting its clinical relevance in drug development.
View Article and Find Full Text PDFBackground: One major limitation of cancer chemotherapy is a failure to specifically target a tumor, potentially leading to side effects such as systemic cytotoxicity. In this case, we have generated a cancer cell-targeting nanoparticle-liposome drug delivery system that can be activated by near-infrared laser light to enable local photo-thermal therapy and the release of chemotherapeutic agents, which could achieve combined therapeutic efficiency.
Methods: To exploit the magnetic potential of iron oxide, we prepared and characterized citric acid-coated iron oxide magnetic nanoparticles (CMNPs) and encapsulated them into thermo-sensitive liposomes (TSLs).
"Off-targeting" and receptor density expressed at the target sites always compromise the efficacy of the nanoparticle-based drug delivery systems. In this study, we isolated different cell membranes and constructed cell membrane-cloaked biogenic nanoparticles for co-delivery of antitumor paclitaxel (PTX) and multidrug resistance (MDR)-modulator disulfiram (DSF). Consequently, MDR cancer cell membrane (A549/T)-coated hybrid nanoparticles (A549/T CM-HNPs) selectively recognized the source cells and increased the uptake by ninefold via the homotypic binding mechanism.
View Article and Find Full Text PDFInfect Control Hosp Epidemiol
June 2021
Cancer is a kind of malignant diseases that threatens human health and the research application of anti-tumor drug therapeutics is growingly always been focused on. Many new compounds with great anticancer activity were synthesized but cannot be hard to be developed into clinical use due to its poor water solubility. Deoxypodophyllotoxin (DPT) is just an example.
View Article and Find Full Text PDFAnkylosing spondylitis (AS) is a complex disease characterized by inflammation and ankylosis primarily at the cartilage-bone interface. The disease is more common in young males and risk factors include both genetic and environmental. While the pathogenesis of AS is not completely understood, it is thought to be an immune-mediated disease involving inflammatory cellular infiltrates, and human leukocyte antigen-B27.
View Article and Find Full Text PDFNanoemulgels are composed of O/W nanoemulsion and hydrogels and are considered as ideal carriers for the transdermal drug delivery because these have high affinity to load hydrophobic drugs. The stable formulation of eprinomectin (EPR) is very challenging because of it is high hydrophobic nature. In this work, we have prepared EPR loaded nanoemulgel for the treatment of endo- and ectoparasites.
View Article and Find Full Text PDFRecent studies have indicated that multidrug resistance (MDR) can significantly limit the effects of conventional chemotherapy. In this study, PT (Pachymic acid and dehydrotumulosic acid) are the two major triterpenoid components purified and identified in P. cocos.
View Article and Find Full Text PDFCardiac troponin I (cTnI) is an important biomarker of acute myocardial infarction (MI) in animals and human beings. Nevertheless, no immunohistochemical study has been reported about the pattern of myocardial cTnI egression in a minimally invasive model. The present study intended to establish a minimally invasive model of MI and to evaluate the distribution of cTnI.
View Article and Find Full Text PDFPurpose: This study was carried out to investigate the effects of a triptolide (TP) nanosuspension and methotrexate (MTX) nanosuspension on left ventricular remodeling and cardiac function for autoimmune myocarditis (EAM) in rats. The regulating effects on inflammatory cytokines in the peripheral serum and related mechanisms are also discussed.
Methods: First, TP and MTX were prepared as a nanosuspension, and the EAM model was successfully established in rats with cardiac myosin.
Multidrug resistance (MDR) is a common intractable barrier in success of clinical cancer chemotherapy. Codelivery of two drugs using nanocarriers is a commonly used approach to treat the MDR cancer. However, the drug payload in the conventional nanocarriers is low and thus compromises the treatment outcomes.
View Article and Find Full Text PDFIntroduction: Cyclosporine-A (CsA) is generally used as an immunosuppressant and is also prescribed for some ophthalmic applications such as vernal keratoconjunctivitis and dry eye. However, it is limited clinically due to its low aqueous solubility and ocular bioavailability.
Methods: In this work, lyophilized methoxy poly(ethylene glycol)-poly(lactide) (mPEG-PLA) polymer micelles were prepared for ophthalmic formulations as a promising nanocarrier for hydrophobic drugs like CsA.
Glioblastoma multiforme is the most devastating malignant brain tumor in adults. Even with the standard care of therapy, the prognosis remains dismal due to tumor heterogeneity, tumor infiltration, and, more importantly, the restrictive nature of the blood-brain barrier (BBB). To overcome the challenge of effectively delivering therapeutic cargo into the brain, herein a "smart", multifunctional polymeric micelle was developed using a cholesterol-conjugated polyoxyethylene sorbitol oleate.
View Article and Find Full Text PDFDelivery of inhalational dry powders (DPs) to the lung of mice is pivotal for pre-clinical pharmacokinetic and pharmacodynamic investigations. Although several devices have been reported, their application is always limited by many factors, including complicated design, high price, commercially discontinued status, as well as requirement of special skills. Here, we have introduced a simple device for non-invasive and precise delivery of DPs in mice.
View Article and Find Full Text PDFIn this study, we prepared paclitaxel (PTX) loaded bovine serum albumin (BSA) microparticles (MPs) of different sizes (0.5, 1.0, and 3.
View Article and Find Full Text PDFA reversibly disulfide-crosslinked pullulan nanoparticle with folic acid (FA) decoration (FA-Pull-LA CLNPs) was fabricated for dual-targeted and reduction-responsive anti-tumoral liver drug delivery based on the specific affinity of pullulan and FA to overexpress asialoglycoprtein receptors (ASGPR) and folate receptors (FR), respectively. Paclitaxel (PTX)-loaded FA-Pull-LA nanoparticles (NPs) with satisfactory size, polydispersity index (PDI), and zeta potential exhibited much faster PTX release in the presence of 10mM glutathione (GSH) rather than physiological conditions. In vitro cellular assays confirmed the dual targetability and endosomal accumulation of FA-Pull-LA NPs.
View Article and Find Full Text PDFNanotechnology-based chemotherapy is efficient in cancer treatment due to the targeted delivery of small molecules via nano-carriers, which are usually regarded as "inert". However, nano-materials are more preferred as carriers since many cause synergistic anti-tumor effects along with the drug cargo. In this study, a "bioactive" tocopherol succinate (TOS) was grafted to hyaluronic acid (HA) via of disulfide bonds to obtain HA-ss-TOS conjugates which can assemble into nano-micelles but dissociate when exposed to reducing environments in vitro and in vivo.
View Article and Find Full Text PDFCore-crosslinked pullulan nanoparticles (Pull-LA-CLNPs) were synthesized by the reduction-sensitive strategy for paclitaxel (PTX) delivery. Pull-LA-CLNPs showed high stability against extensive dilution, high salt concentration and organic solvent. In vitro drug release study showed that PTX release from Pull-LA-NPs at pH 7.
View Article and Find Full Text PDF