Publications by authors named "Chaudhury R"

Oxygen deficiency (hypoxia) occurs naturally in many developing plant tissues but can become a major threat during acute flooding stress. Consequently, plants as aerobic organisms must rapidly acclimate to hypoxia and the associated energy crisis to ensure cellular and ultimately organismal survival. In plants, oxygen sensing is tightly linked with oxygen-controlled protein stability of group VII ETHYLENE-RESPONSE FACTORs (ERFVII), which, when stabilized under hypoxia, act as key transcriptional regulators of hypoxia-responsive genes (HRGs).

View Article and Find Full Text PDF

Background: This study examined inpatient mortality factors in geriatric patients with acute myeloid leukemia (AML) using data from the 2016 to 2020 National Inpatient Sample.

Methods: Identifying patients through ICD-10 codes, a total of 127,985 individuals with AML were classified into age categories as follows: 50.58% were 65 to 74 years, 37.

View Article and Find Full Text PDF

Informal learners of computational skills often fi nd it difficult to self-direct their learning pursuits, which may be spread across different mediums and study sessions. Inspired by self-monitoring interventions from domains such as health and productivity, we investigate key requirements for helping informal learners better self-reflect on their learning experiences. We carried out two elicitation studies with paper-based and interactive probes to explore a range of manual, automatic, and semi-automatic design approaches for capturing and presenting a learner's data.

View Article and Find Full Text PDF

Grass pea has the potential to become a miracle crop if the stigma attached to it as a toxic plant is ignored. In light of the following, we conducted transcriptome analyses on the high and low ODAP-containing cultivars i.e.

View Article and Find Full Text PDF

Mycorrhization has been an integral part of plants since colonization by the early land plants. Over decades, substantial research has highlighted its potential role in improving nutritional efficiency and growth, development and survival of crop plants. However, the focus of this review is trees.

View Article and Find Full Text PDF

Background: Indian Wild Orange (Citrus indica Tanaka) is an endangered and endemic species from northeast India for which effective ex situ conservation strategies, including embryo cryopreservation, are urgently needed.

Materials And Methods: Desiccation tolerance and cryopreservation ability for embryonic axes of Citrus indica was determined using three techniques (air desiccation-freezing, PVS2 vitrification-freezing and encapsulation-dehydration-freezing). Success was assessed as survival and recovery in vitro.

View Article and Find Full Text PDF

A two-step freezing cryoprotocol preceded by desiccation to 15 to 25% moisture content was developed and successfully applied to winter dormant buds of mulberry (different spp.) of a core set comprising 238 accessions studies in our laboratory. The survival and recovery percentage of diverse accessions cryobanked for various periods were tested under in vitro conditions, and several factors were analyzed to determine their role in optimizing the recovery of low-viability accessions.

View Article and Find Full Text PDF

Flowering is one of the most important physiological processes of plants that ensures continuity of genetic flow from one generation to the next and also maintains food security. Therefore, impact of various climate-related abiotic stresses on flowering have been assessed to evaluate the long-term impact of global climate change. In contrast to the enormous volume of research that has been conducted at the genetic, transcriptional, post-transcriptional, and protein level, much less attention has been paid to understand the role of various metabolites in flower induction and floral organ development during normal growth or in stressed environmental condition.

View Article and Find Full Text PDF

Oral formulations of insulin are typically designed to improve its intestinal absorption and increase its blood bioavailability. Here we show that polymerized ursodeoxycholic acid, selected from a panel of bile-acid polymers and formulated into nanoparticles for the oral delivery of insulin, restored blood-glucose levels in mice and pigs with established type 1 diabetes. The nanoparticles functioned as a protective insulin carrier and as a high-avidity bile-acid-receptor agonist, increased the intestinal absorption of insulin, polarized intestinal macrophages towards the M2 phenotype, and preferentially accumulated in the pancreas of the mice, binding to the islet-cell bile-acid membrane receptor TGR5 with high avidity and activating the secretion of glucagon-like peptide and of endogenous insulin.

View Article and Find Full Text PDF

Several immune checkpoint inhibitors (ICIs) have already been introduced into clinical practice or are in advanced phases of clinical experimentation. Extensive efforts are being made to identify robust biomarkers to select patients who may benefit from treatment with ICIs. Tumor mutation burden (TMB) may be a relevant biomarker of response to ICIs in different tumor types; however, its clinical use is challenged by the analytical methods required for its evaluation.

View Article and Find Full Text PDF

Background: Ichang Papeda (Citrus cavaleriei H.Lév. ex Cavalerie) is a wild and endangered species of NE India that requires urgent preservation of its genetic resources.

View Article and Find Full Text PDF

Targeting different cell surface receptors with nanoparticle (NP)-based platforms can result in differential particle binding properties that may impact their localization, bioavailability, and, ultimately, the therapeutic efficacy of an encapsulated payload. Conventional assays comparing the efficacy of targeted NPs often do not adequately control for these differences in particle-receptor binding, potentially confounding their therapeutic readouts and possibly even limiting their experimental value. In this work, we characterize the conditions under which NPs loaded with Bruton's Tyrosine Kinase (BTK) inhibitor differentially suppress primary B cell activation when targeting either CD19 (internalizing) or B220 (noninternalizing) surface receptors.

View Article and Find Full Text PDF

The sensitivity and speed with which the immune system reacts to host disruption is unrivaled by any detection method for pathogenic biomarkers or infectious signatures. Engagement of cellular immunity in response to infections or cancer is contingent upon activation and subsequent cytotoxic activity by T cells. Thus, monitoring T cell activation can reliably serve as a metric for disease diagnosis as well as therapeutic prognosis.

View Article and Find Full Text PDF

Comorbidities such as anemia or hypertension and physiological factors related to exertion can influence a patient's hemodynamics and increase the severity of many cardiovascular diseases. Observing and quantifying associations between these factors and hemodynamics can be difficult due to the multitude of co-existing conditions and blood flow parameters in real patient data. Machine learning-driven, physics-based simulations provide a means to understand how potentially correlated conditions may affect a particular patient.

View Article and Find Full Text PDF

Dendritic cells (DCs) are professional antigen-presenting cells, required for the initiation of naïve and memory T cell responses and regulation of adaptive immunity. The discovery of DCs in 1973, which culminated in the Nobel Prize in Physiology or Medicine in 2011 for Ralph Steinman and colleagues, initially focused on the identification of adherent mononuclear cell fractions with uniquely stellate dendritic morphology, followed by key discoveries of their critical immunologic role in initiating and maintaining antigen-specific immunity and tolerance. The medical promise of marshaling these key capabilities of DCs for therapeutic modulation of antigen-specific immune responses has guided decades of research in hopes to achieve genuine physiologic partnership with the immune system.

View Article and Find Full Text PDF

Background: Neurocognitive dysfunction remains prevalent among people living with HIV (PLWH), even after viral suppression on combination antiretroviral therapy (cART). We investigated associations between neuropsychological performance (NP) and patterns of circulating exosomal microRNA (exo-miRNA) expression in PLWH on cART.

Setting: A cross-sectional examination of plasma exo-miRNA among PLWH on cART with systemic viral suppression and volunteers without HIV infection.

View Article and Find Full Text PDF

The Editor-in-Chief and the publisher have retracted this article [1] because of significant overlap with previously published articles [2-5]. Ajit Uchoi, Surendra Kumar Malik, Ravish Chaudhary, Susheel Kumar, M.R.

View Article and Find Full Text PDF

Gastric cancer remains an unmet clinical problem in urgent need of newer and effective treatments. Here we show that the nuclear export protein, Exportin 1 (XPO1, chromosome region maintenance 1 or CRM1), is a promising molecular target in gastric cancer. We demonstrate significant overexpression of XPO1 in a cohort of histologically diverse gastric cancer patients with primary and metastatic disease.

View Article and Find Full Text PDF

The lattice Boltzmann method (LBM) is a popular alternative to solving the Navier-Stokes equations for modeling blood flow. When simulating flow using the LBM, several choices for inlet and outlet boundary conditions exist. While boundary conditions in the LBM have been evaluated in idealized geometries, there have been no extensive comparisons in image-derived vasculature, where the geometries are highly complex.

View Article and Find Full Text PDF

The ankle-brachial index (ABI), a ratio of arterial blood pressure in the ankles and upper arms, is used to diagnose and monitor circulatory conditions such as coarctation of the aorta and peripheral artery disease. Computational simulations of the ABI can potentially determine the parameters that produce an ABI indicative of ischemia or other abnormalities in blood flow. However, 0- and 1-D computational methods are limited in describing a 3-D patient-derived geometry.

View Article and Find Full Text PDF

The development of atherosclerosis in the aorta is associated with low and oscillatory wall shear stress for normal patients. Moreover, localized differences in wall shear stress heterogeneity have been correlated with the presence of complex plaques in the descending aorta. While it is known that coarctation of the aorta can influence indices of wall shear stress, it is unclear how the degree of narrowing influences resulting patterns.

View Article and Find Full Text PDF

We present a new continuous-wave wearable diffuse optical probe aimed at investigating the hemodynamic response of locally advanced breast cancer patients during neoadjuvant chemotherapy infusions. The system consists of a flexible printed circuit board that supports an array of six dual wavelength surface-mount LED and photodiode pairs. The probe is encased in a soft silicone housing that conforms to natural breast shape.

View Article and Find Full Text PDF

Aortic pathologies such as coarctation, dissection, and aneurysm represent a particularly emergent class of cardiovascular diseases. Computational simulations of aortic flows are growing increasingly important as tools for gaining understanding of these pathologies, as well as for planning their surgical repair. In vitro experiments are required to validate the simulations against real world data, and the experiments require a pulsatile flow pump system that can provide physiologic flow conditions characteristic of the aorta.

View Article and Find Full Text PDF