Publications by authors named "Chau-To Kwok"

Monocytes and macrophages are essential components of the innate immune system. Herein, we report that intron retention (IR) plays an important role in the development and function of these cells. Using Illumina mRNA sequencing, Nanopore direct cDNA sequencing and proteomics analysis, we identify IR events that affect the expression of key genes/proteins involved in macrophage development and function.

View Article and Find Full Text PDF

While intron retention (IR) is considered a widely conserved and distinct mechanism of gene expression control, its regulation is poorly understood. Here we show that DNA methylation directly regulates IR. We also find reduced occupancy of MeCP2 near the splice junctions of retained introns, mirroring the reduced DNA methylation at these sites.

View Article and Find Full Text PDF

Methylation of N adenosine (mA) is known to be important for diverse biological processes including gene expression control, translation of protein, and messenger RNA (mRNA) splicing. However, its role in the development of human cancers is poorly understood. By analyzing datasets from the Cancer Genome Atlas Research Network (TCGA) acute myeloid leukemia (AML) study, we discover that mutations and/or copy number variations of mA regulatory genes are strongly associated with the presence of TP53 mutations in AML patients.

View Article and Find Full Text PDF

Unlabelled: Laterally spreading tumors (LST) are colorectal adenomas that develop into extremely large lesions with predominantly slow progression to cancer, depending on lesion subtype. Comparing and contrasting the molecular profiles of LSTs and colorectal cancers offers an opportunity to delineate key molecular alterations that drive malignant transformation in the colorectum. In a discovery cohort of 11 LSTs and paired normal mucosa, we performed a comprehensive and unbiased screen of the genome, epigenome, and transcriptome followed by bioinformatics integration of these data and validation in an additional 84 large, benign colorectal lesions.

View Article and Find Full Text PDF

Fever is commonly used to diagnose disease and is consistently associated with increased mortality in critically ill patients. However, the molecular controls of elevated body temperature are poorly understood. We discovered that the expression of RNA-binding motif protein 3 (RBM3), known to respond to cold stress and to modulate microRNA (miRNA) expression, was reduced in 30 patients with fever, and in THP-1-derived macrophages maintained at a fever-like temperature (40 °C).

View Article and Find Full Text PDF

Importance: Constitutional hypermethylation of 1 allele throughout the soma (constitutional epimutation) is an accepted mechanism of cancer predisposition. Understanding the origin and inheritance of epimutations is important for assessing cancer risk in affected families.

Observations: We report a 29-year-old man with early-onset colorectal cancer who showed a constitutional MLH1 epimutation (approximately 50% of alleles methylated and allele-specific loss of MLH1 expression) that was stable over a 16-year period.

View Article and Find Full Text PDF

Pyrosequencing(®) is able to quantitate the level of a nucleotide at a designated germ-line or somatic variant, including single nucleotide polymorphisms (SNPs). SNPs within a gene of interest may be used to distinguish between the two genetic alleles and study their behavior in heterozygous individuals. With regard to cancer etiology and development, identification of alleles and the detection of allelic imbalances, such as transcriptional loss from one allele or loss-of-heterozygosity (due to deletion of one allele), within a tumor are particularly useful.

View Article and Find Full Text PDF

Lynch syndrome is a hereditary cancer syndrome caused by a constitutional mutation in one of the mismatch repair genes. The implementation of predictive testing and targeted preventative surveillance is hindered by the frequent finding of sequence variants of uncertain significance in these genes. We aimed to determine the pathogenicity of previously reported variants (c.

View Article and Find Full Text PDF

Germline mutations of the DNA mismatch repair genes MLH1, MSH2, MSH6 or PMS2, and deletions affecting the EPCAM gene adjacent to MSH2, underlie Lynch syndrome by predisposing to early-onset colorectal, endometrial and other cancers. An alternative but rare cause of Lynch syndrome is constitutional epimutation of MLH1, whereby promoter methylation and transcriptional silencing of one allele occurs throughout normal tissues. A dominantly transmitted constitutional MLH1 epimutation has been linked to an MLH1 haplotype bearing two single-nucleotide variants, NM_000249.

View Article and Find Full Text PDF

Development of asthma in childhood is linked to viral infections of the lower respiratory tract in early life, with subsequent chronic exposure to allergens. Progression to persistent asthma is associated with a Th2-biased immunological response and structural remodelling of the airways. The underlying mechanisms are unclear, but could involve epigenetic changes.

View Article and Find Full Text PDF

Constitutional epimutations of tumor suppressor genes manifest as promoter methylation and transcriptional silencing of a single allele in normal somatic tissues, thereby predisposing to cancer. Constitutional MLH1 epimutations occur in individuals with young-onset cancer and demonstrate non-Mendelian inheritance through their reversal in the germline. We report a cancer-affected family showing dominant transmission of soma-wide highly mosaic MLH1 methylation and transcriptional repression linked to a particular genetic haplotype.

View Article and Find Full Text PDF

Lynch syndrome is an autosomal dominant cancer predisposition syndrome classically caused by germline mutations of the mismatch repair genes, MLH1, MSH2, MSH6 and PMS2. Constitutional epimutations of the MLH1 gene, characterized by soma-wide methylation of a single allele of the promoter and allelic transcriptional silencing, have been identified in a subset of Lynch syndrome cases lacking a sequence mutation in MLH1. We report two individuals with no family history of colorectal cancer who developed that disease at age 18 and 20 years.

View Article and Find Full Text PDF

Lynch syndrome is an autosomal dominant cancer susceptibility syndrome characterized by the early development of microsatellite unstable colorectal, endometrial and other cancers. Lynch syndrome is caused by germline heterozygous loss-of-function sequence mutations within the mismatch repair genes MLH1, MSH2, MSH6 or PMS2. Some individuals with Lynch syndrome have constitutional epimutations, characterized by promoter methylation and transcriptional inactivation of a single allele in normal somatic tissues, while others lack identifiable pathogenic changes in the germline.

View Article and Find Full Text PDF

O(6)-methylguanine DNA methyltransferase (MGMT) is a DNA repair protein that restores mutagenic O(6)-methylguanine to guanine. MGMT methylation is frequently observed in sporadic colorectal cancer and was recently correlated with the C>T allele at SNP rs16906252, within the transcriptional enhancer element of the promoter. MGMT methylation has also been associated with KRAS mutations, particularly G>A transitions.

View Article and Find Full Text PDF

Biallelic promoter methylation and transcriptional silencing of the MLH1 gene occurs in the majority of sporadic colorectal cancers exhibiting microsatellite instability due to defective DNA mismatch repair. Long-range epigenetic silencing of contiguous genes has been found on chromosome 2q14 in colorectal cancer. We hypothesized that epigenetic silencing of MLH1 could occur on a regional scale affecting additional genes within 3p22, rather than as a focal event.

View Article and Find Full Text PDF