Well-tolerated and novel antimalarials that can combat multiple stages of the parasite life cycle are desirable but challenging to discover and develop. Herein, we report results for natural product-inspired novel tambjamine antimalarials. We show that they are potent against liver, asexual erythrocytic, and sexual erythrocytic parasite life cycle stages.
View Article and Find Full Text PDFMalaria has been a deadly enemy of mankind throughout history, affecting over 200 million people annually, along with approximately half a million deaths. Resistance to current therapies is of great concern, and there is a dire need for novel and well-tolerated antimalarials that operate by clinically unexploited mechanisms. We have previously reported that both tambjamines and prodiginines are highly potent novel antiplasmodial agents, but they required rigor optimizations to enhance the oral efficacy, safety, and physicochemical properties.
View Article and Find Full Text PDFLeishmaniasis is a neglected tropical disease that is estimated to afflict over 12 million people. Current drugs for leishmaniasis suffer from serious deficiencies, including toxicity, high cost, modest efficacy, primarily parenteral delivery, and emergence of widespread resistance. We have discovered and developed a natural product-inspired tambjamine chemotype, known to be effective against spp, as a novel class of antileishmanial agents.
View Article and Find Full Text PDFIntroduction: Novel hemoperfusion systems are emerging for the treatment of sepsis. These devices can directly remove pathogens, pathogen-associated molecular patterns, cytokines, and other inflammatory markers from circulation. However, significant safety concerns such as potential antibiotic clearance need to be addressed prior to these devices being used in large clinical studies.
View Article and Find Full Text PDFIntroduction: Combat injuries are complex and multimodal. Most injuries to the extremities occur because of explosive devices such as improvised explosive devices. Blast exposure dramatically increases the risk of infection in combat wounds, and there is limited available information on the best antibiotic treatments for these injuries.
View Article and Find Full Text PDFStability of proteins at high temperature has been a topic of interest for many years, as this attribute is favourable for applications ranging from therapeutics to industrial chemical manufacturing. Our current understanding and methods for designing high-temperature stability into target proteins are inadequate. To drive innovation in this space, we have curated a large dataset, learn2thermDB, of protein-temperature examples, totalling 24 million instances, and paired proteins across temperatures based on homology, yielding 69 million protein pairs - orders of magnitude larger than the current largest.
View Article and Find Full Text PDFPrevious studies of mice infected with have shown that a single dose of tafenoquine administered orally is extremely effective at decreasing microscopically detectable parasitemia. However, a critical limitation of studies to date is the lack of data concerning the plasma levels of tafenoquine that are needed to treat babesiosis. In the current study, we begin to address this gap by examining the plasma levels of tafenoquine associated with the rapid reduction of patent parasitemia in a mouse model of babesiosis.
View Article and Find Full Text PDFIntroduction: Considering the potential of weaponized opioids, evaluating how prophylactic countermeasures affect military-relevant performance is necessary. Naltrexone is a commercially available Food and Drug Administration-approved medication that blocks the effects of opioids with minimal side effects. However, the effects of naltrexone on the health and performance of non-substance abusing military personnel are not well described in the existing literature.
View Article and Find Full Text PDFLipid metabolism is implicated in a variety of diseases, including cancer, cell death, and inflammation, but lipidomics has proven to be challenging due to the vast structural diversity over a narrow range of mass and polarity of lipids. Isotope labeling is often used in metabolomics studies to follow the metabolism of exogenously added labeled compounds because they can be differentiated from endogenous compounds by the mass shift associated with the label. The application of isotope labeling to lipidomics has also been explored as a method to track the metabolism of lipids in various disease states.
View Article and Find Full Text PDFGenomic studies and experiments with permeability-deficient strains have revealed a variety of biological targets that can be engaged to kill Gram-negative bacteria. However, the formidable outer membrane and promiscuous efflux pumps of these pathogens prevent many candidate antibiotics from reaching these targets. One such promising target is the enzyme FabI, which catalyzes the rate-determining step in bacterial fatty acid biosynthesis.
View Article and Find Full Text PDFPreclinical models of organismal response to traumatic stress (threat of death or serious injury) can be monitored using neuroendocrine, behavioral, and structural metrics. While many rodent models of traumatic stress have provided a glimpse into select components of the physiological response to acute and chronic stressors, few studies have directly examined the potential differences between stressors and their potential outcomes. To address this gap, we conducted a multi-level comparison of the immediate and longer-term effects of two types of acute traumatic stressors.
View Article and Find Full Text PDFCutaneous leishmaniasis (CL) is the most common form of leishmaniasis affecting human populations, yet CL remains largely ignored in drug discovery programs. CL causes disfiguring skin lesions and often relapses after "clinical cure" using existing therapeutics. To expand the pool of anti-CL lead candidates, we implemented an integrated screening platform comprising three progressive parasite life cycle forms.
View Article and Find Full Text PDFBackground: Malaria remains the top infectious disease threat facing the U.S. military in many forward operating environments.
View Article and Find Full Text PDFThe global impact of malaria remains staggering despite extensive efforts to eradicate the disease. With increasing drug resistance and the absence of a clinically available vaccine, there is an urgent need for novel, affordable, and safe drugs for prevention and treatment of malaria. Previously, we described a novel antimalarial acridone chemotype that is potent against both blood-stage and liver-stage malaria parasites.
View Article and Find Full Text PDFBackground Probiotics are live microbial organisms that provide benefit to the host while co-habitating in the gastrointestinal tract. Probiotics are safe, available over the counter, and have clinical benefit by reducing the number of antibiotic-associated diarrhea days. Prescriptions from providers and direct consumer demand of probiotics appear to be on the rise.
View Article and Find Full Text PDFObjective: Infection as sequelae to explosion-related injury is an enduring threat to our troops. There are limited data on the effects of blast on antibiotic pharmacokinetics (PK), pharmacodynamics (PD), and efficacy. The observational study presented here is our Institute's first attempt to address this issue by combining our existing interdepartmental blast, infection modeling, and in vivo PK/PD capabilities and was designed to determine the PK effects of blast on the first-line antibiotic, cefazolin, in an in vivo mouse model.
View Article and Find Full Text PDFParticle size is an important determinant of gastrointestinal absorption of compounds administrated orally. The present study evaluates the effect of a reduction in particle size assessed by homogenization, sonication, and homogenization plus sonication on the bioavailability of imidazolidinedione (IZ), an antimalarial compound with known causal prophylactic activity and radical cure of relapsing malaria. Formulations were administrated intragastrically to mice, and blood samples were collected for LC-MS/MS analysis.
View Article and Find Full Text PDFMalaria remains one of the deadliest diseases in the world today. Novel chemoprophylactic and chemotherapeutic antimalarials are needed to support the renewed eradication agenda. We have discovered a novel antimalarial acridone chemotype with dual-stage activity against both liver-stage and blood-stage malaria.
View Article and Find Full Text PDFAdolescence is a distinct developmental period characterized by behavioral and physiological maturation. Rapid ongoing changes during neurodevelopment in particular present potential opportunities for stress to have lasting effects on longitudinal outcomes of behavioral and neuroendocrine function. While adult stress effects on outcomes during adulthood have been characterized, little is known about the lasting effects of adolescent repeated stressor exposure on outcomes during adolescence.
View Article and Find Full Text PDFClosed-head concussive injury is one of the most common causes of traumatic brain injury (TBI). Isolated concussions frequently produce acute neurological impairments, and individuals typically recover spontaneously within a short time frame. In contrast, brain injuries resulting from multiple concussions can result in cumulative damage and elevated risk of developing chronic brain pathologies.
View Article and Find Full Text PDFIndividuals with glucose-6-phosphate dehydrogenase (G6PD) deficiency (G6PDd) are at risk for developing hemolytic anemia when given the antimalarial drug primaquine (PQ). The WHO Evidence Review Group released a report suggesting that mass administration of a single dose of PQ at 0.25 mg of base/kg of body weight (mpk) (mouse equivalent of 3.
View Article and Find Full Text PDFBackground: The liver-stage anti-malarial activity of primaquine and other 8-aminoquinoline molecules has been linked to bio-activation through CYP 2D6 metabolism. Factors such as CYP 2D6 poor metabolizer status and/or co-administration of drugs that inhibit/interact with CYP 2D6 could alter the pharmacological properties of primaquine.
Methods: In the present study, the inhibitory potential of the selective serotonin reuptake inhibitor (SSRI) and serotonin norepinephrine reuptake inhibitor (SNRI) classes of antidepressants for CYP 2D6-mediated primaquine metabolism was assessed using in vitro drug metabolism and in vivo pharmacological assays.