Breeding staple crops with increased micronutrient concentration is a sustainable approach to address micronutrient malnutrition. We carried out Multi-Cross QTL analysis and Inclusive Composite Interval Mapping for 11 agronomic, yield and biofortification traits using four connected RILs populations of rice. Overall, MC-156 QTLs were detected for agronomic (115) and biofortification (41) traits, which were higher in number but smaller in effects compared to single population analysis.
View Article and Find Full Text PDFBiofortification of rice with improved grain zinc (Zn) content is the most sustainable and cost-effective approach to address Zn malnutrition in Asia. Genomics-assisted breeding using precise and consistent Zn quantitative trait loci (QTLs), genes, and haplotypes can fast-track the development of Zn biofortified rice varieties. We conducted the meta-analysis of 155 Zn QTLs reported from 26 different studies.
View Article and Find Full Text PDFThe development of micronutrient dense rice varieties with good agronomic traits is one of the sustainable and cost-effective approaches for reducing malnutrition. Identification of QTLs for high grain Fe and Zn, yield and yield components helps in precise and faster development of high Fe and Zn rice. We carried out a three-season evaluation using IR05F102 x IR69428 derived doubled-haploid population at IRRI.
View Article and Find Full Text PDFRice provides energy and nutrition to more than half of the world's population. Breeding rice varieties with the increased levels of bioavailable micronutrients is one of the most sustainable approaches to tackle micronutrient malnutrition. So, high zinc and iron content in the grain are primary targets in rice biofortification breeding.
View Article and Find Full Text PDF