Publications by authors named "Chatterji T"

Article Synopsis
  • * The disease is caused by several species of schistosomes and can result in two forms: intestinal and urogenital, with both involving co-infections that complicate treatment and outcomes; women are particularly at risk due to exposure to contaminated water during daily activities.
  • * The primary treatment is Praziquantel, but it doesn’t prevent re-infections; ongoing research aims to improve schistosomiasis diagnosis through molecular techniques and develop vaccines, focusing on
View Article and Find Full Text PDF

Cubic energy materials such as thermoelectrics or hybrid perovskite materials are often understood to be highly disordered. In GeTe and related IV-VI compounds, this is thought to provide the low thermal conductivities needed for thermoelectric applications. Since conventional crystallography cannot distinguish between static disorder and atomic motions, we develop the energy-resolved variable-shutter pair distribution function technique.

View Article and Find Full Text PDF

The scope of magnetic neutron scattering has been expanded by the observation of electronic Dirac dipoles (anapoles) that are polar (parity odd) and magnetic (time odd). A zero-magnetization ferromagnet Sm_{0.976}Gd_{0.

View Article and Find Full Text PDF

Spin wave dispersion in the frustrated fcc type-III antiferromagnet MnS has been determined by inelastic neutron scattering using a triple-axis spectrometer. Existence of multiple spin wave branches, with significant separation between high-energy and low-energy modes highlighting the intrinsic magnetic frustration effect on the fcc lattice, is explained in terms of a spin wave analysis carried out for the antiferromagnetic Heisenberg model for this S  =  5/2 system with nearest and next-nearest-neighbor exchange interactions. Comparison of the calculated dispersion with spin wave measurement also reveals small suppression of magnetic frustration resulting from reduced exchange interaction between frustrated spins, possibly arising from anisotropic deformation of the cubic structure.

View Article and Find Full Text PDF

We study the spontaneous crystallization of an assembly of highly monodisperse steel spheres under shaking, as it evolves from localized icosahedral ordering towards a packing reaching crystalline ordering. Towards this end, real space neutron tomography measurements on the granular assembly are carried out, as it is systematically subjected to a variation of frequency and amplitude. As expected, we see a presence of localized icosahedral ordering in the disordered initial state (packing fraction ≈ 0.

View Article and Find Full Text PDF

We have investigated the ferromagnetic phase transition of elemental Co by high-resolution neutron backscattering spectroscopy. We monitored the splitting of the nuclear levels by the hyperfine field at the Co nucleus. The energy of this hyperfine splitting is identified as the order parameter of the ferromagnetic phase transition.

View Article and Find Full Text PDF

Background: Parkinson's disease (PD) is the result of progressive degeneration of the nigrostriatal dopaminergic pathway and depletion of neurotransmitter dopamine in the striatum.

Methods: We included 17 patients with PD along with 7 patients of progressive supranuclear palsy (PSP), 6 patients of multiple system atrophy (MSA) and 22 age and sex-matched healthy controls. We analyzed metabolite profiles in the serum of these patients and controls using H NMR spectroscopy.

View Article and Find Full Text PDF

Background: Acute Spinal Cord Injury (ASCI) is still having substantial morbidity and mortality despite of advanced therapeutics. Major obstacles are paucity of monitoring tools or biomarkers for severity determination, recovery and prognostication. A prospective case control pilot study with serum H NMR spectroscopic metabolic profiling was carried out to evaluate metabolites perturbations and its relationship with recovery and to see role of stem cells in facilitating neurological recovery.

View Article and Find Full Text PDF

In order to understand the origin of the huge quasielastic magnetic scattering observed previously with a back-scattering neutron spectrometer, we have re-investigated the low energy excitations in HoCrO by inelastic neutron scattering in a much wider energy range with time-of-flight neutron spectrometers. The inelastic signals are due to the excitations between the ground state doublet of the Ho ion. The quasielastic signal is due to the fluctuation of the disordered Ho moments.

View Article and Find Full Text PDF

In the present study, we report a new setup for polarized neutron imaging at the ORNL High Flux Isotope Reactor CG-1D beamline using an in situ He polarizer and analyzer. This development is very important for extending the capabilities of the imaging instrument at ORNL providing a polarized beam with a large field-of-view, which can be further used in combination with optical devices like Wolter optics, focusing guides, or other lenses for the development of microscope arrangement. Such a setup can be of advantage for the existing and future imaging beamlines at the pulsed neutron sources.

View Article and Find Full Text PDF

Polarised neutron diffraction measurements have been made on HoFeO single crystals magnetised in both the [0 0 1] and [1 0 0] directions (Pbnm setting). The polarisation dependencies of Bragg reflection intensities were measured both with a high field of [Formula: see text] T parallel to [0 0 1] at [Formula: see text] K and with the lower field [Formula: see text] T parallel to [1 0 0] at [Formula: see text] K. A Fourier projection of magnetization induced parallel to [0 0 1], made using the hk0 reflections measured in 9 T, indicates that almost all of it is due to alignment of Ho moments.

View Article and Find Full Text PDF

Background: Cerebrospinal fluid (CSF) is an essential bio-fluid of the central nervous system (CNS), playing a vital role in the protection of CNS and performing neuronal function regulation. The chemical composition of CSF varies during onset of meningitis, neurodegenerative disorders (positive controls) and in traumatic cases (negative controls).

Methods: The study design was broadly categorized into meningitis cases, negative controls and positive controls.

View Article and Find Full Text PDF

Unusual features in magnetization resembling the kinetic arrest of a magnetic glass state are observed in the La-doped double perovskite, SrLaFeCoO. Neutron powder diffraction experiments confirm the presence of antisite disorder as well as a lack of long-range magnetic order down to 4 K in this double perovskite which displays spin glass-like features in dc and ac susceptibilities. Magnetic relaxation observed through cooling and heating under unequal fields (CHUF) point towards unusual domain dynamics which is supported by a broad memory effect.

View Article and Find Full Text PDF

We report a comprehensive specific heat and inelastic neutron scattering study to explore the possible origin of multiferroicity in HoCrO3. We have performed specific heat measurements in the temperature range 100 mK-290 K and inelastic neutron scattering measurements were performed in the temperature range 1.5-200 K.

View Article and Find Full Text PDF

Background: Urosepsis, a severe form of sepsis requires immediate medical attention for prognosis. It is clinically diagnosed by estimating serum procalcitonin (PCT) levels along with time taking urine and blood cultures. We explored NMR based profiling, deriving metabolites that could potentially aid diagnosis.

View Article and Find Full Text PDF

We report the characterisation of natural samples of the cubic pyrite mineral MnS2 using very high resolution synchrotron x-ray diffraction techniques. At low temperatures we find a new low temperature polymorph, which results from coupling between magnetic and lattice degrees of freedom. Below the magnetic ordering temperature T(N) = 48 K, we detect a pseudo-tetragonal distortion with a tiny c/a ratio of 1.

View Article and Find Full Text PDF

To study the role of FAK signaling complexes in promoting metastatic properties of prostate cancer (PCa) cells, we selected stable, highly migratory variants, termed PC3 Mig-3 and DU145 Mig-3, from two well-characterized PCa cell lines, PC3 and DU145. These variants were not only increased migration and invasion in vitro, but were also more metastatic to lymph nodes following intraprostatic injection into nude mice. Both PC3 Mig-3 and DU145 Mig-3 were specifically increased in phosphorylation of FAK Y861.

View Article and Find Full Text PDF

Room-temperature ferromagnetism in Mn-doped chalcopyrites is a desire aspect when applying those materials to spin electronics. However, dominance of high Curie-temperatures due to cluster formation or inhomogeneities limited their consideration. Here we report how an external perturbation such as applied hydrostatic pressure in CdGeP₂:Mn induces a two serial magnetic transitions from ferromagnet to non-magnet state at room temperature.

View Article and Find Full Text PDF

Elastic and anelastic properties of La0.5Ca0.5MnO3 determined by resonant ultrasound spectroscopy in the frequency range ∼100-1200 kHz have been used to evaluate the role of grain size in determining the competition between ferromagnetism and Jahn-Teller/charge order of manganites which show colossal magneto resistance.

View Article and Find Full Text PDF

Dramatic volume collapses under pressure are fundamental to geochemistry and of increasing importance to fields as diverse as hydrogen storage and high-temperature superconductivity. In transition metal materials, collapses are usually driven by so-called spin-state transitions, the interplay between the single-ion crystal field and the size of the magnetic moment. Here we show that the classical S = 5/2 mineral hauerite (MnS2) undergoes an unprecedented (ΔV ~ 22%) collapse driven by a conceptually different magnetic mechanism.

View Article and Find Full Text PDF

Resonant ultrasound spectroscopy has been used to monitor variations in the elastic and anelastic behaviour of polycrystalline CoF2 through the temperature interval 10-290 K and in the frequency range ∼0.4-2 MHz. Marked softening, particularly of the shear modulus, and a peak in attenuation occur as the Néel point (TN=39 K) is approached from both high and low temperatures.

View Article and Find Full Text PDF

We report the magnetization (M) and magnetoresistance (MR) results of HoAl2 single crystals oriented along the ⟨100⟩ and ⟨110⟩ directions. Although HoAl2 has cubic Laves phase structure, a large anisotropy is observed in M and MR below the Curie temperature (TC). A satisfactory correlation between magnetic entropy change (ΔSM) and MR could be established along ⟨110⟩ and also ⟨100⟩, except for the temperature (T) region around which spin reorientation takes place.

View Article and Find Full Text PDF

Resonant ultrasound spectroscopy has been used to measure the elastic and anelastic behaviour through known structural and magnetic phase transitions in single crystal hexagonal YMnO3. Anomalous elastic behaviour is observed at the high temperature structural transition at ∼1260 K, with a discontinuity in the elastic constants and nonlinear recovery below Tc, consistent with [Formula: see text] coupling. There is no change in dissipation associated with this high temperature transition, and no evidence in the elastic or anelastic behaviour for any secondary transition at ∼920 K, thus supporting the thesis of a single high temperature transformation.

View Article and Find Full Text PDF

We report a structural transition from the orthorhombic to the rhombohedral phase upon size reduction in nanocrystalline LaMnO(3+δ) (δ ≈ 0:03) as revealed through neutron diffraction studies. The transition occurs when the average particle (crystallite) size is taken below ~50 nm without change of δ, which is fixed at around 0.03 as measured by a number of characterization tools.

View Article and Find Full Text PDF

The possibility of coupling through the hyperfine interaction of nuclear spins with the electronic spin system has given rise to hope for potential novel applications in spintronics and quantum computations. We investigated the dispersion of nuclear spin waves in such a coupled system, Nd2CuO4, by using neutron-spin-echo spectroscopy at millikelvin temperatures. Our results show the existence of dispersion of nuclear spin waves in Nd2CuO4 at T D 40 mK.

View Article and Find Full Text PDF