The bacterial CopC family of proteins are periplasmic copper binding proteins that act in copper detoxification. These proteins contain Cu(I) and/or Cu(II) binding sites, with the family that binds Cu(II) only the most prevalent, based on sequence analyses. Here we present three crystal structures of the CopC protein from Pseudomonas fluorescens (Pf-CopC) that include the wild type protein bound to Cu(II) and two variant proteins, where Cu(II) coordinating ligands were mutated, in Cu-free states.
View Article and Find Full Text PDFCu-ATPases are membrane copper transporters present in all kingdoms of life. They play a central role in Cu homeostasis by pumping Cu ions across cell membranes with energy derived from ATP hydrolysis. In this work, the Cu-ATPase CopA from Escherichia coli was expressed and purified in fully functional form and demonstrated to bind Cu(I) with subfemtomolar affinity.
View Article and Find Full Text PDFQuantitative characterization of metalloproteins at molecular and atomic levels generally requires tens of milligrams of highly purified samples, a situation frequently challenged by problems in generating unmodified native forms. A variety of affinity tags, such as the popular poly-histidine tag, have been developed to facilitate purification but they generally rely on expensive affinity resins and their presence may interfere with protein characterization. This paper documents that addition of a poly-lysine tag to the C-terminus enables, for the copper-binding proteins examined, ready purification in large scale via cost-effective cation-exchange chromatography.
View Article and Find Full Text PDFReliable quantification of copper binding affinities and identification of the binding sites provide a molecular basis for an understanding of the nutritional roles and toxic effects of copper ions. Sets of chromophoric probes are now available that can quantify Cu(i) binding affinities from nanomolar to attomolar concentrations on a unified scale under in vitro conditions. Equivalent probes for Cu(ii) are lacking.
View Article and Find Full Text PDFCopper homeostasis in the bacterium Pseudomonas fluorescens SBW25 appears to be mediated mainly via chromosomal cue and cop systems. Under elevated copper levels that induce stress, the cue system is activated for expression of a P1B-type ATPase to remove excess copper from the cytosol. Under copper-limiting conditions, the cop system is activated to express two copper uptake proteins, Pf-CopCD, to import this essential nutrient.
View Article and Find Full Text PDF