Publications by authors named "Chathura de Alwis"

Uncovering the mechanisms associated with CO capture through mineralization is vital for addressing rising CO levels. Iron in planetary soils, the mineral cycle, and atmospheric dust react with CO through complex surface chemistry. Here, the effect of cations on the growth of carbonate films on iron surfaces was investigated.

View Article and Find Full Text PDF

Surface corrosion involves a series of redox reactions that are catalyzed by the presence of ions. On infrastructure surfaces and in complex and natural environments, iron surfaces readily undergo redox reactions, impacting chemical processes. In this study, the effect of how cations influence the formation of the mineral scale on iron surfaces and its connection to surface corrosion was investigated in CaCl(aq) and NaCl(aq) electrolytes.

View Article and Find Full Text PDF

Iron interfaces undergo redox and catalytic processes in various environments, on the surface of soils, dust, minerals, and materials that comprise industrial infrastructure. Measuring reactions at interfaces in complex environments is challenging, where adsorption of gases and interaction of aqueous species occur at the surface. This is due to the presence of several ionic species in solutions that catalyze surface oxidation and undergo ion exchange between the solution and the surface and from the influx of oxygen and other gases.

View Article and Find Full Text PDF

Vibrational spectroscopy techniques have evolved to measure gases, liquids, and solids at surfaces and interfaces. In the field of surface-sensitive vibrational spectroscopy, infrared spectroscopy measures the adsorption on surfaces and changes from reactions. Previous polarized modulated-infrared reflection-absorption spectroscopy (PM-IRRAS) measurements at the gas/solid interface were developed to observe catalytic reactions near reaction conditions.

View Article and Find Full Text PDF

Iron oxide nanomaterials participate in redox processes that give them ideal properties for their use as earth-abundant catalysts. Fabricating nanocatalysts for such applications requires detailed knowledge of the deposition and growth. We report the spontaneous deposition of iron oxide nanoparticles on HOPG in defect areas and on step edges from a metal precursor solution.

View Article and Find Full Text PDF