Eur Phys J E Soft Matter
January 2025
The creep behavior of an amorphous poly(etherimide) polymer is investigated in the vicinity of its glass transition in a weakly non linear regime where the acceleration of the creep response is driven by local configurational rearrangements. From the time shifts of the creep compliance curves under stresses from 1 to 15 MPa and in the temperature range between and , where is the glass transition temperature, we determine a macroscopic acceleration factor. The macroscopic acceleration is shown to vary as temperature with , where is the macroscopic stress and Y is a decreasing function of compliance.
View Article and Find Full Text PDFWe report on the frictional properties of thin (≈μm) poly(dimethylacrylamide) hydrogel films within contacts with spherical silica probes. In order to focus on the contribution to friction of interfacial dissipation, a dedicated rotational setup is designed which allows to suppress poroelastic flows while ensuring a uniform velocity field at the sliding interface. The physical-chemistry of the interface is varied from the grafting of various silanes on the silica probes.
View Article and Find Full Text PDFWe report on the delamination of thin (≈μm) hydrogel films grafted to silicon substrates under the action of swelling stresses. Poly(dimetylacrylamide) (PDMA) films are synthesized by simultaneously cross-linking and grafting preformed polymer chains onto the silicon substrate using a thiol-ene reaction. The grafting density at the film/substrate interface is tuned by varying the surface density of reactive thiol-silane groups on the silicon substrate.
View Article and Find Full Text PDFWe report on the transient frictional response of contacts between a rigid spherical glass probe and a micrometer-thick poly(dimethylacrylamide) hydrogel film grafted onto a glass substrate when a lateral relative motion is applied to the contact initially at rest. From dedicated experiments with in situ contact visualization, both the friction force and the contact size are observed to vary well beyond the occurrence of a full sliding condition at the contact interface. Depending on the imposed velocity and on the static contact time before the motion is initiated, either an overshoot or an undershoot in the friction force is observed.
View Article and Find Full Text PDFHydrogel coatings absorb water vapor, or other solvents, and, as such, are good candidates for antifog applications. In the present study, the transfer of vapor from the atmosphere to hydrogel thin films is measured in a situation where water vapor flows alongside the coating which is set to a temperature lower than the ambient temperature. The effect of the physico-chemistry of the hydrogel film on the swelling kinetics is particularly investigated.
View Article and Find Full Text PDFWe report on the frictional behavior of thin poly(dimethylacrylamide) hydrogel films grafted on glass substrates in sliding contact with a glass spherical probe. Friction experiments are carried out at various velocities and normal loads applied with the contact fully immersed in water. In addition to friction force measurements, a novel optical setup is designed to image the shape of the contact under steady-state sliding.
View Article and Find Full Text PDFWe report on a theoretical and experimental investigation of the normal contact of stretched neo-Hookean substrates with rigid spherical probes. Starting from a published formulation of surface Green's function for incremental displacements on a prestretched, neo-Hookean, substrate [J. Mech.
View Article and Find Full Text PDFIn this paper, we report on new experimental results on the effects of in-plane surface stretching on the friction of poly(dimethylsiloxane) (PDMS) rubber with smooth rigid probes. Friction-induced displacement fields are measured at the surface of the PDMS substrate under steady-state sliding. Then, the corresponding contact pressure and frictional stress distributions are determined from an inversion procedure.
View Article and Find Full Text PDFWe report an unexpected behavior in wetting dynamics on soft silicone substrates: the dynamics of aqueous droplets deposited on vertical plates of such elastomers exhibits two successive speed regimes. This macroscopic observation is found to be closely related to microscopic phenomena occurring at the scale of the polymer network: we show that uncrosslinked chains found in most widely used commercial silicone elastomers are responsible for this surprising behavior. A direct visualization of the uncrosslinked oligomers collected by water droplets is performed, evidencing that a capillarity-induced phase separation occurs: uncrosslinked oligomers are extracted from the silicone elastomer network by the water-glycerol mixture droplet.
View Article and Find Full Text PDFWe report on the poroelastic indentation response of hydrogel thin films geometrically confined within contacts with rigid spherical probes of radii in the millimeter range. Poly(PEGMA) (poly(ethylene glycol) methyl ether methacrylate), poly(DMA) (dimethylacrylamide) and poly(NIPAM) (N-isopropylacrylamide) gel films with thickness less than 15 μm were grafted onto glass substrates using a thiol-ene click chemistry route. Changes in the indentation depth under constant applied load were monitored over time as a function of the film thickness and the radius of curvature of the probe using an interferometric method.
View Article and Find Full Text PDFIn spite of significant advances in replication technologies, methods to produce well-defined three-dimensional structures are still at its infancy. Such a limitation would be evident if we were to produce a large array of simple and, especially, compound convex lenses, also guaranteeing that their surfaces would be molecularly smooth. Here, we report a novel method to produce such structures by cloning the 3D shape of nectar drops, found widely in nature, using conventional soft lithography.
View Article and Find Full Text PDFWe report on normal contact and friction measurements of model multicontact interfaces formed between smooth surfaces and substrates textured with a statistical distribution of spherical micro-asperities. Contacts are either formed between a rigid textured lens and a smooth rubber, or a flat textured rubber and a smooth rigid lens. Measurements of the real area of contact A versus normal load P are performed by imaging the light transmitted at the microcontacts.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
November 2013
Frictional properties of contacts between a smooth viscoelastic rubber and rigid surfaces are investigated using a torsional contact configuration where a glass lens is continuously rotated on the rubber surface. From the inversion of the displacement field measured at the surface of the rubber, spatially resolved values of the steady state frictional shear stress are determined within the nonhomogeneous pressure and velocity fields of the contact. For contacts with a smooth lens, a velocity-dependent but pressure-independent local shear stress is retrieved from the inversion.
View Article and Find Full Text PDFThe shear failure and friction mechanisms of bioinspired adhesives consisting of elastomer arrays of microfibres terminated by mushroom-shaped tips are investigated in contact with a rigid lens. In order to reveal the interplay between the vertical and lateral loading directions, experiments are carried out using a custom friction set-up in which normal stiffness can be made either high or low when compared with the stiffness of the contact between the fibrillar adhesive and the lens. Using in situ contact imaging, the shear failure of the adhesive is found to involve two successive mechanisms: (i) cavitation and peeling at the contact interface between the mushroom-shaped fibre tip endings and the lens; and (ii) side re-adhesion of the fibre's stem to the lens.
View Article and Find Full Text PDFEur Phys J E Soft Matter
September 2012
We report on an experimental study of heterogeneous slip instabilities generated during stick-slip motions at a contact interface between a smooth rubber substrate and a patterned glass lens. Using a sol-gel process, the glass lens is patterned with a lattice of parallel ridges (wavelength, 1.6 μm, amplitude 0.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
February 2010
The shear failure or stiction of an adhesive contact between a poly(dimethylsiloxane) (PDMS) rubber and a glass lens has been investigated using a torsional contact configuration. As compared to linear sliding, torsion presents the advantage of inducing a shear failure under a pure mode III condition, while preserving the cylindrical symmetry of the contact. The surface of the transparent PDMS substrate was marked using a network of dots in order to monitor continuously the in-plane surface displacements during the stiction process.
View Article and Find Full Text PDFEur Phys J E Soft Matter
October 2008
This paper reports on spatially resolved measurements of the shear stress distribution at a frictional interface between a flat rubber substrate and a glass lens. Silicone rubber specimens marked close to their surface by a colored pattern have been prepared in order to measure the surface displacement field induced by the steady-state friction of the spherical probe. The deconvolution of this displacement field then provides the actual shear stress distribution at the contact interface.
View Article and Find Full Text PDF