Per- and polyfluoroalkyl substances (PFAS) are fluorinated and refractory pollutants that are ubiquitous in industrial wastewater. Photocatalytic destruction of such pollutants with catalysts such as TiO and ZnO is an attractive avenue for removal of PFAS, but refined forms of such photocatalysts are expensive. This study, for the first time, utilized milled unrefined raw mineral ilmenite, coupled to UV-C irradiation to achieve mineralization of the two model PFAS compounds perfluorooctanoic acid (PFOA) and perfluoro octane sulfonic acid (PFOS).
View Article and Find Full Text PDFGraphene quantum dots (GQDs) were synthesized using watermelon rind waste as a photoluminescent (PL) agent for ferric ion (Fe3+) detection and in vitro cellular bio-imaging. A green and simple one-pot hydrothermal technique was employed to prepare the GQDs. Their crystalline structures corresponded to the lattice fringe of graphene, possessing amide, hydroxyl, and carboxyl functional groups.
View Article and Find Full Text PDFFly ash (FA), obtained as waste materials from industrial power plants, is generated in large quantities and low recycling. In this study, re-generation of waste FA as cost-effective materials with adsorbent and antibacterial applications was assessed. Alkaline/zinc-activated fly ash nanocomposite (A-FA/Zn) was prepared using one-pot hydrothermal technique.
View Article and Find Full Text PDFImproving the antibacterial activity of biodegradable materials is crucial for combatting widespread drug-resistant bacteria and plastic pollutants. In this work, we studied polyaniline (PANI)-functionalized zinc oxide nanoparticles (ZnO NPs) to improve surface charges. A PANI-functionalized ZnO NP surface was prepared using a simple impregnation technique.
View Article and Find Full Text PDFZinc oxide/reduced graphene oxide nanocomposites (ZnO/rGO) are synthesized via a simple one-pot solvothermal technique. The nanoparticle-nanorod turnability was achieved with the increase in GO additive, which was necessary to control the defect formation. The optimal defect in ZnO/rGO not only increased ZnO/rGO surface and carrier concentration, but also provided the alternative carrier pathway assisted with rGO sheet for electron-hole separation and prolonging carrier recombination.
View Article and Find Full Text PDF