Publications by authors named "Chasse H"

During the first steps of sea urchin development, fertilization elicits a marked increase in protein synthesis essential for subsequent cell divisions. While the translation of mitotic cyclin mRNAs is crucial, we hypothesized that additional mRNAs must be translated to finely regulate the onset into mitosis. One of the maternal mRNAs recruited onto active polysomes at this stage codes for the initiation factor eIF4B.

View Article and Find Full Text PDF

Protein synthesis is a major regulatory step of gene expression in different physiological processes including development. Translation of proteins in sea urchin is stimulated upon fertilization and is necessary for cell cycle progression and development. Translational control is exerted through multifactorial mechanisms, including mRNA recruitment into polysomes and increased rates of translational activity.

View Article and Find Full Text PDF

Sea urchin early development is a powerful model to study translational regulation under physiological conditions. Fertilization triggers an activation of the translation machinery responsible for the increase of protein synthesis necessary for the completion of the first embryonic cell cycles. The cap-binding protein eIF4E, the helicase eIF4A and the large scaffolding protein eIF4G are assembled upon fertilization to form an initiation complex on mRNAs involved in cap-dependent translation initiation.

View Article and Find Full Text PDF

Early embryogenesis relies on the translational regulation of maternally stored mRNAs. In sea urchin, fertilization triggers a dramatic rise in translation activity, necessary for the onset of cell division. Here, the full spectrum of the mRNAs translated upon fertilization was investigated by polysome profiling and sequencing.

View Article and Find Full Text PDF

During the past decade, there has been growing interest in the role of translational regulation of gene expression in many organisms. Polysome profiling has been developed to infer the translational status of a specific mRNA species or to analyze the translatome, i.e.

View Article and Find Full Text PDF

Using sea urchin embryos, we demonstrate that the MEK/MAPK/ERK cascade is essential for the proper progression of the cell cycle. Activation of a limited fraction of MAPK/ERK is required between S-phase and M-phase. Neither DNA replication nor CDK1 activation are impacted by the inhibition of this small active MAPK/ERK fraction.

View Article and Find Full Text PDF

The cyclin B/CDK1 complex is a key regulator of mitotic entry. Using PP242, a specific ATP-competitive inhibitor of mTOR kinase, we provide evidence that the mTOR signalling pathway controls cyclin B mRNA translation following fertilization in Sphaerechinus granularis and Paracentrotus lividus. We show that PP242 inhibits the degradation of the cap-dependent translation repressor 4E-BP (eukaryotic initiation factor 4E-Binding Protein).

View Article and Find Full Text PDF
Article Synopsis
  • A 9-year-old girl experiencing anxiety and depression was diagnosed with mitral valve prolapse syndrome, highlighting a potential link between the two conditions.
  • Literature reviewing the relationship between mitral valve prolapse, anxiety, and depression is discussed, along with the patient's family history of related health issues.
  • The case emphasizes the necessity of a bio-psycho-social approach in treatment and suggests considering mitral valve prolapse in differential diagnoses for anxiety.
View Article and Find Full Text PDF