The antitumor efficacy of an intratumoral injection of a genetically engineered oncolytic vaccinia virus carrying human IL-7 and murine IL-12 genes (hIL-7/mIL-12-VV) was demonstrated in CT26.WT-bearing mice. In the CT26.
View Article and Find Full Text PDFAlmost all pharmaceutical products are approved on the basis of their effect in patients representing the "average" of the population studied in registrational trials, with most drug labels allowing, at most, for empirical dose reduction in the case of toxicity. In this perspective article we explore some of the evidence that supports the use of personalised dosing in cancer treatment and show how we have been able to build on existing models linking dose, exposure and toxicity to demonstrate how dose optimisation, including increasing the dose, has the potential to significantly improve efficacy outcomes. We also explore, through the lens of our own experience of developing a personalised dosing platform, some of the hurdles that stand in the way of implementing a personalised approach to dosing in real world settings.
View Article and Find Full Text PDFGenetic engineering of metabolic pathways is a standard strategy to increase the production of metabolites of economic interest. However, such flux increases could very likely lead to undesirable changes in metabolite concentrations, producing deleterious perturbations on other cellular processes. These negative effects could be avoided by implementing a balanced increase of enzyme concentrations according to the Universal Method [Kacser and Acerenza (1993) Eur J Biochem 216:361-367].
View Article and Find Full Text PDFApplication of metabolic engineering principles to the rational design of microbial production processes crucially depends on the ability to describe quantitatively the systemic behavior of the central carbon metabolism to redirect carbon fluxes to the product-forming pathways. Despite the importance for several production processes, development of an essential dynamic model for central carbon metabolism of Escherichia coli has been severely hampered by the current lack of kinetic information on the dynamics of the metabolic reactions. Here we present the design and experimental validation of such a dynamic model, which, for the first time, links the sugar transport system (i.
View Article and Find Full Text PDFSystems biology needs to show practical relevance to commercial biological challenges such as those of pharmaceutical development. The aim of this work is to design and validate some applications in anti-cancer therapeutic development. The test system was a group of novel cyclin-dependent kinase (CDK) inhibitors synthesised by Cyclacel Ltd.
View Article and Find Full Text PDFA "second-generation" production strain was derived from a Corynebacterium glutamicum pantothenate producer by rational design to assess its potential to synthesize and accumulate the vitamin pantothenate by batch cultivation. The new pantothenate production strain carries a deletion of the ilvA gene to abolish isoleucine synthesis, the promoter down-mutation P-ilvEM3 to attenuate ilvE gene expression and thereby increase ketoisovalerate availability, and two compatible plasmids to overexpress the ilvBNCD genes and duplicated copies of the panBC operon. Production assays in shake flasks revealed that the P-ilvEM3 mutation and the duplication of the panBC operon had cumulative effects on pantothenate production.
View Article and Find Full Text PDFA first generation genetically modified strain of Corynebacterium glutamicum has been assessed for its potential to synthesise and accumulate the vitamin pantothenic acid in the medium using fed-batch cultivation technology, with biomass concentration controlled by isoleucine limitation. Kinetic analysis of specific rates throughout the process has been used to model carbon flux through both central metabolism and the specific pathways involved in product formation. Flux towards pantothenic acid is potentially high but much of this flux is dissipated as by-products within associated pathways, notably linked to amino acid synthesis.
View Article and Find Full Text PDFKetopantoate reductase catalyzes the second step of the pantothenate pathway after ketoisovalerate, common intermediate in valine, leucine and pantothenate biosynthesis. We show here that the Corynebacterium glutamicum ilvC gene is able to complement a ketopantoate reductase deficient Escherichia coli mutant. Thus ilvC, encoding acetohydroxyacid isomeroreductase, involved in the common pathway for branched-chained amino acids, also exhibits ketopantoate reductase activity.
View Article and Find Full Text PDFThe enzymatic activities of threonine pathway in Escherichia coli are sensitive to pollutants such as cadmium, copper and mercury, which, even at low concentration, can substantially decrease or even block the pathway at several steps. Our aim was to investigate the complex effects on a metabolic pathway of such general enzyme inhibitors with several sites of action, using a previously developed computer simulation of the pathway. For this purpose, the inhibition parameters were experimentally determined and incorporated in the model.
View Article and Find Full Text PDFCarbon flux analysis during a pseudo-stationary phase of metabolite accumulation in a genetically engineered strain of Corynebacterium glutamicum, containing plasmids leading to over-expression of the ilvBNCD and panBC operons, has identified the basic metabolic constraints governing the potential of this bacterium to produce pantothenate. Carbon flux converging on pyruvate (75% of glucose uptake) is controlled by anabolic precursor requirements and NADPH demand provoking high carbon loss as CO2 via the pentose pathway. Virtually all the flux of pyruvate is directed into the branched pathway leading to both valine and pantothenate production, but flux towards valine is tenfold higher than that transformed to pantothenate, indicating that significant improvements will only be obtained if carbon flux at the ketoisovalerate branchpoint can be modulated.
View Article and Find Full Text PDFBoth experimental and theoretical studies of metabolism are likely to relate to a segment that has been isolated for analytical purposes. In practice, it will be embedded in the whole of cellular metabolism. Thus, it is necessary to consider how conclusions about the control of an isolated pathway may be modified in this wider context where the input and output metabolites are considered as variables of cellular metabolism.
View Article and Find Full Text PDFA computer simulation of the threonine-synthesis pathway in Escherichia coli Tir-8 has been developed based on our previous measurements of the kinetics of the pathway enzymes under near-physiological conditions. The model successfully simulates the main features of the time courses of threonine synthesis previously observed in a cell-free extract without alteration of the experimentally determined parameters, although improved quantitative fits can be obtained with small parameter adjustments. At the concentrations of enzymes, precursors and products present in cells, the model predicts a threonine-synthesis flux close to that required to support cell growth.
View Article and Find Full Text PDFWe have developed an experimental model of the whole threonine pathway that allows us to study the production of threonine from aspartate under different conditions. The model consisted of a desalted crude extract of Escherichia coli to which we added the substrates and necessary cofactors of the pathway: aspartate, ATP and NADPH. In this experimental model we measured not only the production of threonine, but also the time dependence of all the intermediate metabolites and of the initial substrates, aspartate, ATP and NADPH.
View Article and Find Full Text PDFWe have determined the kinetic parameters of the individual steps of the threonine pathway from aspartate in Escherichia coli under a single set of experimental conditions chosen to be physiologically relevant. Our aim was to summarize the kinetic behaviour of each enzyme in a single tractable equation that takes into account the effect of the products as competitive inhibitors of the substrates in the forward reaction and also, when appropriate (e.g.
View Article and Find Full Text PDFActa Biotheor
December 1995
Threonine is an essential amino acid for mammals and birds and an adequate supply is necessary for growth and maintenance. Its production has become the aim of metabolic bioengineering and genetic manipulations. We propose in this paper a rational approach for increasing threonine production in an E.
View Article and Find Full Text PDF