Recent experiments have shown that in addition to control by cis regulatory elements, the local chromosomal context of a gene also has a profound impact on its transcription. Although this chromosome-position dependent expression variation has been empirically mapped at high-resolution, the underlying causes of the variation have not been elucidated. Here, we demonstrate that 1 kb of flanking, non-coding synthetic sequences with a low frequency of guanosine and cytosine (GC) can dramatically reduce reporter expression compared to neutral and high GC-content flanks in Escherichia coli.
View Article and Find Full Text PDFCOMPROMISED HYDROLYSIS OF TRIACYLGLYCEROLS7 (CHT7) in Chlamydomonas () was previously shown to affect the transcription of a subset of genes during nitrogen (N)-replete growth and following N refeeding. Here, we show that an extensive derepression of genes involved in DNA metabolism and cell cycle-related processes, as well as downregulation of genes encoding oxidoreductases and nutrient transporters, occurs in the mutant during N deprivation. Cellular mutant phenotypes are consistent with the observed transcriptome misregulation, as cells fail to properly arrest growth, nuclear replication, and cell division following N deprivation.
View Article and Find Full Text PDF