Publications by authors named "Chase Haddix"

Brain-computer interfaces (BCIs) offer disabled individuals the means to interact with devices by decoding the electroencephalogram (EEG). However, decoding intent in fine motor tasks can be challenging, especially in stroke survivors with cortical lesions. Here, we attempt to decode graded finger extension from the EEG in stroke patients with left-hand paresis and healthy controls.

View Article and Find Full Text PDF

Background And Objectives: Paralysis after spinal cord injury involves damage to pathways that connect neurons in the brain to peripheral nerves in the limbs. Re-establishing this communication using neural interfaces has the potential to bridge the gap and restore upper extremity function to people with high tetraplegia. We report a novel approach for restoring upper extremity function using selective peripheral nerve stimulation controlled by intracortical microelectrode recordings from sensorimotor networks, along with restoration of tactile sensation of the hand using intracortical microstimulation.

View Article and Find Full Text PDF
Article Synopsis
  • A novel approach to restore upper extremity function in individuals with high tetraplegia is explored through selective peripheral nerve stimulation, guided by signals from intracortical microelectrode recordings.
  • The study involved a right-handed man with complete paralysis due to spinal cord injury, who received implants in specific brain areas and peripheral nerves to enable targeted muscle contractions and restore tactile sensation.
  • Results showed successful recording of neural activity linked to intended movements and stimulation that allowed the subject to experience touch, indicating the system's effectiveness and good tolerance without complications.
View Article and Find Full Text PDF

. Brain-computer interfaces (BCIs) show promise as a direct line of communication between the brain and the outside world that could benefit those with impaired motor function. But the commands available for BCI operation are often limited by the ability of the decoder to differentiate between the many distinct motor or cognitive tasks that can be visualized or attempted.

View Article and Find Full Text PDF

There is resurgent interest in the role played by autonomic dysfunction in seizure generation. Advances in wearable sensors make it convenient to track many autonomic variables in patient populations. This study assesses peri-ictal changes in surrogate measures of autonomic activity for their predictive value in epilepsy patients.

View Article and Find Full Text PDF

Purpose: Studies have shown that marker-less motion detection systems, such as the first generation Kinect (Kinect 1), have good reliability and potential for clinical application. Studies of the second generation Kinect (Kinect 2) have shown a large range of accuracy relative to balance and joint localization; however, few studies have investigated the validity and reliability of the Kinect 2 for upper extremity motion. This investigation compared reliability and validity among the Kinect 1, Kinect 2 and a video motion capture (VMC) system for upper extremity movements.

View Article and Find Full Text PDF