Mass transport is performance-defining across energy storage devices, often causing limitations at high current rates. To optimize and balance the device-scale energy and power density for a given energy storage demand, tailored electrode architectures with precisely controllable phase dimensions are needed in combination with low-tortuosity channels that maximize the geometric component of diffusion and species flux. A material-agnostic nonequilibrium soft-matter process is reported to fabricate free-standing inorganic composite electrodes with adjustable thicknesses of 100s of µm, featuring straight and accessible channels ranging in diameter from 5-30 µm, coupled with tunable material-to-pore ratios.
View Article and Find Full Text PDF