Publications by authors named "Charulatha Ramanathan"

Objectives: To compare right ventricular (RV) activation during intrinsic conduction or pacing in heart failure (HF) patients.

Background: RV activation during intrinsic conduction or pacing in patients with left ventricular (LV) dysfunction is unclear but may affect the prognosis. In cardiac resynchronization therapy (CRT), timed LV pacing (CRT-LV) may be superior to biventricular pacing (CRT-BiV), and is hypothesized to be due to the merging of LV-paced and right bundle branch-mediated wavefronts, thus avoiding perturbation of RV electrical activation.

View Article and Find Full Text PDF

Knowledge of normal human cardiac excitation stems from isolated heart or intraoperative mapping studies under nonphysiological conditions. Here, we use a noninvasive imaging modality (electrocardiographic imaging) to study normal activation and repolarization in intact unanesthetized healthy adults under complete physiological conditions. Epicardial potentials, electrograms, and isochrones were noninvasively reconstructed.

View Article and Find Full Text PDF

Background: Cardiac resynchronization therapy (CRT) for congestive heart failure patients with delayed left ventricular (LV) conduction is clinically beneficial in approximately 70% of patients. Unresolved issues include patient selection, lead placement, and efficacy of LV pacing alone. Being an electrical approach, detailed electrical information during CRT is critical to resolving these issues.

View Article and Find Full Text PDF

We report the first clinical application of electrocardiographic imaging (ECGI), a new, noninvasive imaging modality for arrhythmias, in an athlete with focal ventricular tachycardia (VT) originating from a left ventricular (LV) diverticulum. A reconstructed map of the epicardial activation sequence during a single premature ventricular complex (PVC) of an identical QRS morphology to the clinical VT, generated from 224-electrode body surface ECGs and a chest CT (ECGI), localized the PVC to the site of the diverticulum. This correlated with subsequent maps obtained using standard techniques.

View Article and Find Full Text PDF

Objectives/background: Cardiac arrhythmias are a leading cause of death and disability. Electrocardiographic imaging (ECGI) is a noninvasive imaging modality that reconstructs potentials, electrograms, and isochrones on the epicardial surface from body surface measurements. We previously demonstrated in animal experiments through comparison with simultaneously measured epicardial data the high accuracy of ECGI in imaging cardiac electrical events.

View Article and Find Full Text PDF

Over 7 million people worldwide die annually from erratic heart rhythms (cardiac arrhythmias), and many more are disabled. Yet there is no imaging modality to identify patients at risk, provide accurate diagnosis and guide therapy. Standard diagnostic techniques such as the electrocardiogram (ECG) provide only low-resolution projections of cardiac electrical activity on the body surface.

View Article and Find Full Text PDF

To date there is no imaging modality for cardiac arrhythmias which remain the leading cause of sudden death in the United States (> 300000/yr.). Electrocardiographic imaging (ECGI), a noninvasive modality that images cardiac arrhythmias from body surface potentials, requires the geometrical relationship between the heart surface and the positions of body surface ECG electrodes.

View Article and Find Full Text PDF

Electrocardiographic imaging (ECGI) is a developing imaging modality for cardiac electrophysiology and arrhythmias. It reconstructs epicardial potentials, electrograms, and isochrones from electrocardiographic body-surface potentials noninvasively. Current ECGI methodology employs Tikhonov regularization, which imposes constraints on the reconstructed potentials or their derivatives.

View Article and Find Full Text PDF