In hafnia-based thin-film ferroelectric devices, chemical phenomena during growth and processing, such as oxygen vacancy formation and interfacial reactions, appear to strongly affect device performance. However, the correlation between the structure, chemistry, and electrical potentials at the nanoscale in these devices is not fully known, making it difficult to understand their influence on device properties. Here, we directly image the composition and electrostatic potential with nanometer resolution in the cross section of a nanocrystalline W/HfZrO (HZO)/W ferroelectric capacitor using multimodal electron microscopy.
View Article and Find Full Text PDFVan der Waals (vdW) stacking is a powerful technique to achieve desired properties in condensed matter systems through layer-by-layer crystal engineering. A remarkable example is the control over the twist angle between artificially-stacked vdW crystals, enabling the realization of unconventional phenomena in moiré structures ranging from superconductivity to strongly correlated magnetism. Here, we report the appearance of unusual 120° twisted faults in vdW magnet CrI crystals.
View Article and Find Full Text PDFElectrical control of charge density waves has been of immense interest, as the strong underlying electron-lattice interactions potentially open new, efficient pathways for manipulating their ordering and, consequently, their electronic properties. However, the transition mechanisms are often unclear as electric field, current, carrier injection, heat, and strain can all contribute and play varying roles across length scales and timescales. Here, we provide insight on how electrical stimulation melts the room temperature charge density wave order in 1T-TaS_{2} by visualizing the atomic and mesoscopic structural dynamics from quasi-static to nanosecond pulsed melting.
View Article and Find Full Text PDFAntiferromagnetic (AFM) materials are a pathway to spintronic memory and computing devices with unprecedented speed, energy efficiency, and bit density. Realizing this potential requires AFM devices with simultaneous electrical writing and reading of information, which are also compatible with established silicon-based manufacturing. Recent experiments have shown tunneling magnetoresistance (TMR) readout in epitaxial AFM tunnel junctions.
View Article and Find Full Text PDF2D van der Waals (vdW) magnets open landmark horizons in the development of innovative spintronic device architectures. However, their fabrication with large scale poses challenges due to high synthesis temperatures (>500 °C) and difficulties in integrating them with standard complementary metal-oxide semiconductor (CMOS) technology on amorphous substrates such as silicon oxide (SiO) and silicon nitride (SiN). Here, a seeded growth technique for crystallizing CrTe films on amorphous SiN/Si and SiO/Si substrates with a low thermal budget is presented.
View Article and Find Full Text PDFComprehending the interaction between geometry and magnetism in three-dimensional (3D) nanostructures is important to understand the fundamental physics of domain wall (DW) formation and pinning. Here, we use focused-electron-beam-induced deposition to fabricate magnetic nanohelices with increasing helical curvature with height. Using electron tomography and Lorentz transmission electron microscopy, we reconstruct the 3D structure and magnetization of the nanohelices.
View Article and Find Full Text PDFGeneration and control of topological spin textures constitutes one of the most exciting challenges of modern spintronics given their potential applications in information storage technologies. Of particular interest are magnetic insulators, which due to low damping, absence of Joule heating and reduced dissipation can provide energy-efficient spin-textures platform. Here, it is demonstrated that the interplay between sample thickness, external magnetic fields, and optical excitations can generate a prolific paramount of spin textures, and their coexistence in insulating CrBr van der Waals (vdW) ferromagnets.
View Article and Find Full Text PDFTwo-dimensional (2D) van der Waals magnets comprise rich physics that can be exploited for spintronic applications. We investigate the interplay between spin-phonon coupling and spin textures in a 2D van der Waals magnet by combining magneto-Raman spectroscopy with cryogenic Lorentz transmission electron microscopy. We find that when stable skyrmion bubbles are formed in the 2D magnet, a field-dependent Raman shift can be observed, and this shift is absent for the 2D magnet prepared in its ferromagnetic state.
View Article and Find Full Text PDFFeGeTe is a promising two-dimensional (2D) van der Waals (vdW) magnet for practical applications, given its magnetic properties. These include Curie temperatures above room temperature, and topological spin textures─TST (both merons and skyrmions), responsible for a pronounced anomalous Hall effect (AHE) and its topological counterpart (THE), which can be harvested for spintronics. Here, we show that both the AHE and THE can be amplified considerably by just adjusting the thickness of exfoliated FeGeTe, with THE becoming observable even in zero magnetic field due to a field-induced unbalance in topological charges.
View Article and Find Full Text PDFModern scanning microscopes can image materials with up to sub-atomic spatial and sub-picosecond time resolutions, but these capabilities come with large volumes of data, which can be difficult to store and analyze. We report the Fast Autonomous Scanning Toolkit (FAST) that addresses this challenge by combining a neural network, route optimization, and efficient hardware controls to enable a self-driving experiment that actively identifies and measures a sparse but representative data subset in lieu of the full dataset. FAST requires no prior information about the sample, is computationally efficient, and uses generic hardware controls with minimal experiment-specific wrapping.
View Article and Find Full Text PDFIt is critical to understand the effect of lattice geometry on the order parameter of a condensed matter system, as it controls phase transitions in such systems. Artificial spin ices (ASIs) are two-dimensional lattices of Ising-like nanomagnets that provide an opportunity to explore such phenomena by lithographically controlling the lattice geometry to observe its influence on magnetic ordering and frustration effects. Here we report a systematic approach to studying the effects of disorder in rhombus ASIs generated from combinations of five vertex motifs.
View Article and Find Full Text PDFFe GeTe is a centrosymmetric, layered van der Waals (vdW) ferromagnet that displays Curie temperatures T (270-330 K) that are within the useful range for spintronic applications. However, little is known about the interplay between its topological spin textures (e.g.
View Article and Find Full Text PDFDeep learning has become ubiquitous, touching daily lives across the globe. Today, traditional computer architectures are stressed to their limits in efficiently executing the growing complexity of data and models. Compute-in-memory (CIM) can potentially play an important role in developing efficient hardware solutions that reduce data movement from compute-unit to memory, known as the von Neumann bottleneck.
View Article and Find Full Text PDFThe physics of phase transitions in two-dimensional (2D) systems underpins research in diverse fields including statistical mechanics, nanomagnetism, and soft condensed matter. However, many aspects of 2D phase transitions are still not well understood, including the effects of interparticle potential, polydispersity, and particle shape. Magnetic skyrmions are chiral spin-structure quasi-particles that form two-dimensional lattices.
View Article and Find Full Text PDFThe effect of confinement on electron and ion transport in oxide films is of interest both fundamentally and technologically for the design of next-generation electronic devices. In metal oxides with mobile ions and vacancies, it is the interplay of the different modes of charge transport and the corresponding current-voltage signatures that is of interest. We developed a patterned structure in titania films, with feature sizes of 11-20 nm, that allow us to explore confined transport.
View Article and Find Full Text PDFA number of grain boundary phenomena in ionic materials, in particular, anomalous (either depressed or enhanced) charge transport, have been attributed to space charge effects. Developing effective strategies to manipulate transport behaviour requires deep knowledge of the origins of the interfacial charge, as well as its variability within a polycrystalline sample with millions of unique grain boundaries. Electron holography is a powerful technique uniquely suited for studying the electric potential profile at individual grain boundaries, whereas atom-probe tomography provides access to the chemical identify of essentially every atom at individual grain boundaries.
View Article and Find Full Text PDFTopological concepts play an important role in, and provide unique insights into, many physical phenomena. In particular topological defects have become an active area of research due to their relevance to diverse systems including condensed matter and the early universe. These defects arise in systems during phase transitions or symmetry-breaking operations that lead to a specific configuration of the order parameter that is stable against external perturbations.
View Article and Find Full Text PDFThe development of magnetic nanostructures for applications in spintronics requires methods capable of visualizing their magnetization. Soft X-ray magnetic imaging combined with circular magnetic dichroism allows nanostructures up to 100-300 nm in thickness to be probed with resolutions of 20-40 nm. Here a new iterative tomographic reconstruction method to extract the three-dimensional magnetization configuration from tomographic projections is presented.
View Article and Find Full Text PDFA correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has not been fixed in the paper.
View Article and Find Full Text PDFOne of the challenges in developing Lithium anodes for Lithium ion batteries (LIB) is controlling the formation of Li dendrites during cycling of the battery. Nanostructuring and nanopatterning of electrodes shows a promising way to suppress the growth of Li dendrites. However, in order to control this behavior, a fundamental understanding of the effect of nanopatterning on the electro-mechanical properties of Li metal is necessary.
View Article and Find Full Text PDFWe have studied the ferroelectric domains in (001) BiFeO (BFO) films patterned into mesas with various aspect ratios, using angle-resolved piezoresponse force microscope (AR-PFM), which can image the in-plane polarization component with an angular resolution of 30°. We observed not only stable polarization variants, but also meta-stable polarization variants, which can reduce the charge accumulated at domain boundaries. We considered the number of neighboring domains that are in contact, in order to analyze the complexity of the ferroelectric domain structure.
View Article and Find Full Text PDFAnalytical electron microscopy and spectroscopy of biological specimens, polymers, and other beam sensitive materials has been a challenging area due to irradiation damage. There is a pressing need to develop novel imaging and spectroscopic imaging methods that will minimize such sample damage as well as reduce the data acquisition time. The latter is useful for high-throughput analysis of materials structure and chemistry.
View Article and Find Full Text PDFLorentz transmission electron microscopy (TEM) observations of magnetic nanoparticles contain information on the magnetic and electrostatic potentials. Vector field electron tomography (VFET) can be used to reconstruct electromagnetic potentials of the nanoparticles from their corresponding LTEM images. The VFET approach is based on the conventional filtered back projection approach to tomographic reconstructions and the availability of an incomplete set of measurements due to experimental limitations means that the reconstructed vector fields exhibit significant artifacts.
View Article and Find Full Text PDF