Publications by authors named "Charmion Cruickshank-Quinn"

Chronic obstructive pulmonary disease (COPD) is variable in its development. Lung microbiota and metabolites collectively may impact COPD pathophysiology, but relationships to clinical outcomes in milder disease are unclear. Identify components of the lung microbiome and metabolome collectively associated with clinical markers in milder stage COPD.

View Article and Find Full Text PDF

Background And Aim: Metabolic syndrome (MetS) is a complex disease of physiological imbalances interrelated to abnormal metabolic conditions, such as abdominal obesity, type II diabetes, dyslipidemia and hypertension. In the present pilot study, we investigated the nutraceutical bitter melon ( L) -intake induced transcriptome and metabolome changes and the converging metabolic signaling networks underpinning its inhibitory effects against MetS-associated risk factors.

Experimental Procedure: Metabolic effects of lyophilized bitter melon juice (BMJ) extract (oral gavage 200 mg/kg/body weight-daily for 40 days) intake were evaluated in diet-induced obese C57BL/6J male mice [fed-high fat diet (HFD), 60 kcal% fat].

View Article and Find Full Text PDF

Small studies have recently suggested that there are specific plasma metabolic signatures in chronic obstructive pulmonary disease (COPD), but there have been no large comprehensive study of metabolomic signatures in COPD that also integrate genetic variants. Fresh frozen plasma from 957 non-Hispanic white subjects in COPDGene was used to quantify 995 metabolites with Metabolon's global metabolomics platform. Metabolite associations with five COPD phenotypes (chronic bronchitis, exacerbation frequency, percent emphysema, post-bronchodilator forced expiratory volume at one second [FEV]/forced vital capacity [FVC], and FEV percent predicted) were assessed.

View Article and Find Full Text PDF

Study Objective: Identify small molecule biomarkers of insufficient sleep using untargeted plasma metabolomics in humans undergoing experimental insufficient sleep.

Methods: We conducted a crossover laboratory study where 16 normal-weight participants (eight men; age 22 ± 5 years; body mass index < 25 kg/m2) completed three baseline days (9 hours sleep opportunity per night) followed by 5-day insufficient (5 hours sleep opportunity per night) and adequate (9 hours sleep opportunity per night) sleep conditions. Energy balanced diets were provided during baseline, with ad libitum energy intake provided during the insufficient and adequate sleep conditions.

View Article and Find Full Text PDF

Smoking causes chronic obstructive pulmonary disease (COPD). Though recent studies identified a COPD metabolomic signature in blood, no large studies examine the metabolome in bronchoalveolar lavage (BAL) fluid, a more direct representation of lung cell metabolism. We performed untargeted liquid chromatography-mass spectrometry (LC-MS) on BAL and matched plasma from 115 subjects from the SPIROMICS cohort.

View Article and Find Full Text PDF

In this article, we develop a graphical modeling framework for the inference of networks across multiple sample groups and data types. In medical studies, this setting arises whenever a set of subjects, which may be heterogeneous due to differing disease stage or subtype, is profiled across multiple platforms, such as metabolomics, proteomics, or transcriptomics data. Our proposed Bayesian hierarchical model first links the network structures within each platform using a Markov random field prior to relate edge selection across sample groups, and then links the network similarity parameters across platforms.

View Article and Find Full Text PDF

Metabolomics is emerging as a valuable tool in clinical science. However, one major challenge in clinical metabolomics is the limited use of standardized guidelines for sample collection and handling. In this study, we conducted a pilot analysis of serum and plasma to determine the effects of processing time and collection tube on the metabolome.

View Article and Find Full Text PDF

Chronic obstructive pulmonary disease (COPD) comprises multiple phenotypes such as airflow obstruction, emphysema, and frequent episodes of acute worsening of respiratory symptoms, known as exacerbations. The goal of this pilot study was to test the usefulness of unbiased metabolomics and transcriptomics approaches to delineate biological pathways associated with COPD phenotypes and outcomes. Blood was collected from 149 current or former smokers with or without COPD and separated into peripheral blood mononuclear cells (PBMC) and plasma.

View Article and Find Full Text PDF

Advancements in omics technologies have increased our potential to evaluate molecular changes in a rapid and comprehensive manner. This is especially true in mass spectrometry-based metabolomics where improvements, including ease of use, in high-performance liquid chromatography (HPLC), column chemistries, instruments, software, and molecular databases, have advanced the field considerably. Applications of this relatively new omics technology in clinical research include discovering disease biomarkers, finding new drug targets, and elucidating disease mechanisms.

View Article and Find Full Text PDF

Advancing age is associated with impairments in numerous physiological systems, leading to an increased risk of chronic disease and disability, and reduced healthspan (the period of high functioning healthy life). The plasma metabolome is thought to reflect changes in the activity of physiological systems that influence healthspan. Accordingly, we utilized an LC-MS metabolomics analysis of plasma collected from healthy young and older individuals to characterize global changes in small molecule abundances with age.

View Article and Find Full Text PDF

The analysis of bronchoalveolar lavage fluid (BALF) using mass spectrometry-based metabolomics can provide insight into lung diseases, such as asthma. However, the important step of compound identification is hindered by the lack of a small molecule database that is specific for BALF. Here we describe prototypic, small molecule databases derived from human BALF samples (n=117).

View Article and Find Full Text PDF

In this paper, we propose a Bayesian hierarchical approach to infer network structures across multiple sample groups where both shared and differential edges may exist across the groups. In our approach, we link graphs through a Markov random field prior. This prior on network similarity provides a measure of pairwise relatedness that borrows strength only between related groups.

View Article and Find Full Text PDF

Mass spectrometry-based metabolomics is being increasingly utilized in various research fields including investigating human diseases, nutrition, industrial applications, and plant/natural products studies. Although new analytical approaches have enhanced the performance of metabolomic analyses, significant challenges associated with throughput, metabolome coverage, and compound identification still exist. Ion mobility mass spectrometry offers great potential for improving throughput and depth of coverage in metabolomics experiments.

View Article and Find Full Text PDF

This observational study catalogues the overlap in metabolites between matched bronchoalveolar lavage fluid (BALF) and plasma, identifies the degree of congruence between these metabolomes in human and mouse, and determines how molecules may change in response to cigarette smoke (CS) exposure. Matched BALF and plasma was collected from mice (ambient air or CS-exposed) and humans (current or former smokers), and analyzed using mass spectrometry. There were 1155 compounds in common in all 4 sample types; fatty acyls and glycerophospholipids strongly overlapped between groups.

View Article and Find Full Text PDF

Prolonged cigarette smoking (CS) causes chronic obstructive pulmonary disease (COPD), a prevalent serious condition that may persist or progress after smoking cessation. To provide insight into how CS triggers COPD, we investigated temporal patterns of lung transcriptome expression and systemic metabolome changes induced by chronic CS exposure and smoking cessation. Whole lung RNA-seq data was analyzed at transcript and exon levels from C57Bl/6 mice exposed to CS for 1- or 7 days, for 3-, 6-, or 9 months, or for 6 months followed by 3 months of cessation using age-matched littermate controls.

View Article and Find Full Text PDF

A commercial liquid chromatography/drift tube ion mobility-mass spectrometer (LC/IM-MS) was evaluated for its utility in global metabolomics analysis. Performance was assessed using 12 targeted metabolite standards where the limit of detection (LOD), linear dynamic range, resolving power, and collision cross section (Ω) are reported for each standard. Data were collected in three different instrument operation modes: flow injection analysis with IM-MS (FIA/IM-MS), LC/MS, and LC/IM-MS.

View Article and Find Full Text PDF

Background: Researchers investigating lung diseases, such as asthma, have questioned whether certain compounds previously reported in exhaled breath condensate (EBC) originate from saliva contamination. Moreover, despite its increasing use in 'omics profiling studies, the constituents of EBC remain largely uncharacterized. The present study aims to define the usefulness of EBC in investigating lung disease by comparing EBC, saliva, and saliva-contaminated EBC using targeted and untargeted mass spectrometry and the potential of metabolite loss from adsorption to EBC sample collection tubes.

View Article and Find Full Text PDF

Currently, no reliable markers are available to evaluate the epileptogenic potential of a brain injury. The electroencephalogram is the standard method of diagnosis of epilepsy; however, it is not used to predict the risk of developing epilepsy. Biomarkers that indicate an individual's risk to develop epilepsy, especially those measurable in the periphery are urgently needed.

View Article and Find Full Text PDF

Advancing age is associated with reductions in nitric oxide bioavailability and changes in metabolic activity, which are implicated in declines in motor and cognitive function. In preclinical models, sodium nitrite supplementation (SN) increases plasma nitrite and improves motor function, whereas other nitric oxide-boosting agents improve cognitive function. This pilot study was designed to translate these findings to middle-aged and older (MA/O) humans to provide proof-of-concept support for larger trials.

View Article and Find Full Text PDF

Insufficient nitric oxide (NO) bioavailability plays an important role in endothelial dysfunction and arterial stiffening with aging. Supplementation with sodium nitrite, a precursor of NO, ameliorates age-related vascular endothelial dysfunction and arterial stiffness in mice, but effects on humans, including the metabolic pathways altered, are unknown. The purpose of this study was to determine the safety, feasibility, and efficacy of oral sodium nitrite supplementation for improving vascular function in middle-aged and older adults and to identify related circulating metabolites.

View Article and Find Full Text PDF

Electrophysiological recordings from brain slices are typically performed in small recording chambers that allow for the superfusion of the tissue with artificial extracellular solution (ECS), while the chamber holding the tissue is mounted in the optical path of a microscope to image neurons in the tissue. ECS itself is inexpensive, and thus superfusion rates and volumes of ECS consumed during an experiment using standard ECS are not critical. However, some experiments require the addition of expensive pharmacological agents or other chemical compounds to the ECS, creating a need to build superfusion systems that operate on small volumes while still delivering appropriate amounts of oxygen and other nutrients to the tissue.

View Article and Find Full Text PDF

Metabolomics is an emerging field which enables profiling of samples from living organisms in order to obtain insight into biological processes. A vital aspect of metabolomics is sample preparation whereby inconsistent techniques generate unreliable results. This technique encompasses protein precipitation, liquid-liquid extraction, and solid-phase extraction as a means of fractionating metabolites into four distinct classes.

View Article and Find Full Text PDF

Cigarette smoke exposure is linked to the development of a variety of chronic lung and systemic diseases in susceptible individuals. Metabolomics approaches may aid in defining disease phenotypes, may help predict responses to treatment, and could identify biomarkers of risk for developing disease. Using a mouse model of chronic cigarette smoke exposure sufficient to cause mild emphysema, we investigated whether cigarette smoke induces distinct metabolic profiles and determined their persistence following smoking cessation.

View Article and Find Full Text PDF

Motivation: Although R packages exist for the pre-processing of metabolomic data, they currently do not incorporate additional analysis steps of summarization, filtering and normalization of aligned data. We developed the MSPrep R package to complement other packages by providing these additional steps, implementing a selection of popular normalization algorithms and generating diagnostics to help guide investigators in their analyses.

Availability: http://www.

View Article and Find Full Text PDF