Publications by authors named "Charlton Cooper"

Objective: What initiates the pubertal process in humans and other mammals is still unknown. We hypothesized that gene(s) taking roles in triggering human puberty may be identified by studying a cohort of idiopathic hypogonadotropic hypogonadism (IHH).

Methods: A cohort of IHH cases was studied based on autozygosity mapping coupled with whole exome sequencing.

View Article and Find Full Text PDF

The steroid receptor RNA activator gene (SRA1) produces both a functional RNA (SRA) and a protein (SRAP), whose exact physiological roles remain unknown. To identify cellular processes regulated by SRAP we compared the transcriptome of Hela and MDA-MB-231 cancer cells upon depletion of the SRA/SRAP transcripts or overexpression of the SRAP protein. RNA-seq and Ontology analyses pinpointed cellular movement as potentially regulated by SRAP.

View Article and Find Full Text PDF

Histone deacetylases (HDACs) and lysine acetyltransferases (KATs) catalyze dynamic histone acetylation at regulatory and coding regions of transcribed genes. Highly phosphorylated HDAC2 is recruited within corepressor complexes to regulatory regions, while the nonphosphorylated form is associated with the gene body. In this study, we characterized the nonphosphorylated HDAC2 complexes recruited to the transcribed gene body and explored the function of HDAC-complex-mediated dynamic histone acetylation.

View Article and Find Full Text PDF

Background: The steroid receptor RNA activator protein (SRAP) is a newly described protein modulating the activity of multiple transcription factors including the estrogen receptor (ER). We have recently reported the immunodetection by Western blot of multiple SRAP peptides in breast tissue. High expression of these peptides, assessed by tissue micro-array (TMA) analysis, was associated with poor prognosis in patients whose primary tumors were ER positive (ER+).

View Article and Find Full Text PDF

The Steroid Receptor RNA Activator (SRA) was first identified by Lanz et al. in 1999 as a functional non-coding RNA able to co-activate steroid nuclear receptors. Since this incipient study, our understanding of SRA as a broader co-regulator of nuclear receptors as well as other transcription factors has greatly expanded.

View Article and Find Full Text PDF

Products of the steroid receptor RNA activator (SRA1) gene have the unusual property to function both at the RNA and the protein levels. SRA-RNA has long been known to increase the activity of multiple nuclear receptors. It has more recently been proposed than steroid receptor RNA activator protein (SRAP) also modulates steroid receptors activity.

View Article and Find Full Text PDF

The steroid receptor RNA activator gene (SRA1) encodes for a functional RNA (SRA) as well as a protein (SRAP). While several groups reported on SRA-RNA mechanism of action, SRAP exact function remains to be elucidated, mainly due to a lack of studies investigating the function of the protein independently of its RNA counterpart. Using two independent models to examine its specific functions, SRAP was found to enhance estrogen receptor alpha activity in a ligand and response-element dependent manner.

View Article and Find Full Text PDF

Introduction: The steroid receptor RNA activator is a functional RNA suspected to participate in the mechanisms underlying breast tumor progression. This RNA is also able to encode for a protein, Steroid Receptor RNA Activator Protein (SRAP), whose exact function remains to be determined. Our aim was to assess, in a large breast cancer cohort, whether levels of this protein could be associated with outcome or established clinical parameters.

View Article and Find Full Text PDF

Products of the Steroid Receptor RNA Activator gene (SRA1) have the unusual property to modulate the activity of steroid receptors and other transcription factors both at the RNA (SRA) and the protein (SRAP) level. Balance between these two genetically linked entities is controlled by alternative splicing of intron-1, whose retention alters SRAP reading frame. We have previously found that both fully-spliced SRAP-coding and intron-1-containing non-coding SRA RNAs co-exist in breast cancer cell lines.

View Article and Find Full Text PDF

The Steroid Receptor RNA Activator 1 (SRA1) has originally been described as a noncoding RNA specifically activating steroid receptor transcriptional activity. We have, however, identified, in human breast tissue, exon- 1 extended SRA1 isoforms containing two initiating AUG codons and encoding a protein we called SRAP. We recently reported a decreased estrogen receptor activity in breast cancer cells overexpressing SRAP, suggesting antagonist roles played by SRA1 RNA and SRAP.

View Article and Find Full Text PDF

Purpose: Hypoxia may influence gene expression to promote malignancy, and acute hypoxia has been shown to transiently repress estrogen receptor (ER)-alpha expression in breast cell lines. However, the effect of intermittent hypoxia, which is likely more prevalent in breast cancers, remains to be determined.

Experimental Design: ER-alpha expression was assessed by Western blot and immunohistochemistry in a selected cohort of 51 ER-alpha-positive breast carcinomas, in relation to markers of hypoxia.

View Article and Find Full Text PDF