Publications by authors named "Charlotte Steiniger"

Fungal secondary metabolites are widely used as therapeutics and are vital components of drug discovery programs. A major challenge hindering discovery of novel secondary metabolites is that the underlying pathways involved in their biosynthesis are transcriptionally silent under typical laboratory growth conditions, making it difficult to identify the transcriptional networks that they are embedded in. Furthermore, while the genes participating in secondary metabolic pathways are typically found in contiguous clusters on the genome, known as biosynthetic gene clusters (BGCs), this is not always the case, especially for global and pathway-specific regulators of pathways' activities.

View Article and Find Full Text PDF

Fungi have the ability to transform organic materials into a rich and diverse set of useful products and provide distinct opportunities for tackling the urgent challenges before all humans. Fungal biotechnology can advance the transition from our petroleum-based economy into a bio-based circular economy and has the ability to sustainably produce resilient sources of food, feed, chemicals, fuels, textiles, and materials for construction, automotive and transportation industries, for furniture and beyond. Fungal biotechnology offers solutions for securing, stabilizing and enhancing the food supply for a growing human population, while simultaneously lowering greenhouse gas emissions.

View Article and Find Full Text PDF

A considerable number of complex peptides are synthesized by nonribosomal peptide synthetases (NRPSs). Due to their multimodular architecture and widely understood basic biosynthetic reactions, these synthetases represent a promising target for compound diversification by active reprogramming. Nevertheless, the limited knowledge about mechanistic details such as C domain specificity hampers rational synthetase engineering.

View Article and Find Full Text PDF

Nonribosomal peptide synthetases assemble a considerable number of structurally complex peptides of pharmacological importance. This turns them into important biosynthetic machineries for peptide diversification by engineering approaches. To date, manifold reprogramming approaches focus on employing module and domain exchanges, or the engineering of domains responsible for amino acid recognition.

View Article and Find Full Text PDF

Nonribosomal peptide synthetases represent potential platforms for the design and engineering of structurally complex peptides. While previous focus has been centred mainly on bacterial systems, fungal synthetases assembling drugs like the antifungal echinocandins, the antibacterial cephalosporins or the anthelmintic cyclodepsipeptide (CDP) PF1022 await in-depth exploitation. As various mechanistic features of fungal CDP biosynthesis are only partly understood, effective engineering of NRPSs has been severely hampered.

View Article and Find Full Text PDF