We describe in situ neutron reflectivity (NR) and RAIRS studies of the chemical modification of films of a polypyrrole-based conducting polymer derived from the pentafluorophenyl ester of poly(pyrrole-N-propanoic acid) (PFP) electrodeposited on electrode surfaces. We explore the role of the solvent in controlling the rate of reaction with solution-based nucleophiles (amines, which react with the ester to form amides). By varying the identity of the solvent (water vs acetonitrile) and the neutron contrast (deuteration), we find that both the identity of the solvent and its population within the film are paramount in determining chemical reactivity and electroactivity.
View Article and Find Full Text PDFWe describe a method, based on X-ray photoelectron spectroscopy (XPS) measurements, to assess the extent of protein adsorption or binding on a variety of different muTAS and biosensor interfaces. Underpinning this method is the labeling of protein molecules with either iodine- or bromine-containing motifs by using protocols previously developed for radiotracer studies. Using this method, we have examined the adsorption and binding properties of a variety of modified electrodeposited polymer interfaces as well as other materials used in muTAS device fabrication.
View Article and Find Full Text PDF