The growing energy consumption and the need for a circular economy have driven considerable interest in the anaerobic digestion (AD) of organic waste, offering potential solutions through biogas and digestate production. AD processes not only have the capability to reduce greenhouse gas emissions but also contribute to the production of renewable methane. This comprehensive review aims to consolidate prior research on AD involving different feedstocks.
View Article and Find Full Text PDFAnaerobic digestion is an increasingly widespread process for organic waste treatment and renewable energy production due to the methane content of the biogas. This biological process also produces a digestate (i.e.
View Article and Find Full Text PDFThis article contains the data of 11 organic substrates including physicochemical, biochemical and nutritional characterisations. Additionally, it includes for all substrates the data of organic matter fractionation into easily biodegradable, slowly biodegradable and inert fractions performed with anaerobic respirometry method. Finally, based on physicochemical characterisations and organic matter fractionation, a detailed methodology for the determination of input state variables required for the anaerobic digestion model N°1 (ADM1) was presented and the dataset for all substrates is provided.
View Article and Find Full Text PDFThe embryonic dorsal aorta plays a pivotal role in the production of the first hematopoietic stem cells (HSCs), the founders of the adult hematopoietic system. HSC production is polarized by being restricted to the aortic floor where a specialized subset of endothelial cells (ECs) endowed with hemogenic properties undergo an endothelial-to-hematopoietic production resulting in the formation of the intra-aortic hematopoietic clusters. This production is tightly time- and space-controlled with the transcription factor Runx1 playing a key role in this process and the surrounding tissues controlling the aortic shape and fate.
View Article and Find Full Text PDFHematopoietic stem cells (HSCs) are produced by a small cohort of hemogenic endothelial cells (ECs) during development through the formation of intra-aortic hematopoietic cell (HC) clusters. The Runx1 transcription factor plays a key role in the EC-to-HC and -HSC transition. We show that Runx1 expression in hemogenic ECs and the subsequent initiation of HC formation are tightly controlled by the subaortic mesenchyme, although the mesenchyme is not a source of HCs.
View Article and Find Full Text PDFSince the era of the ancient Egyptians and Greeks, the avian embryo has been a subject of intense interest to visualize the first steps of development. It has served as a pioneer model to scrutinize the question of hematopoietic development from the beginning of the 20th century. It's large size and easy accessibility have permitted the development of techniques dedicated to following the origins and fates of different cell populations.
View Article and Find Full Text PDF