Publications by authors named "Charlotte R Knudsen"

DNA-encoded libraries hold great potential for discovering small, cyclized peptides with drug potential. Split-intein circular ligation of peptides and proteins (SICLOPPS) is a well-established method for selection of cyclic peptides targeting specific intracellular components. However, the method has mainly been used in prokaryotic cells.

View Article and Find Full Text PDF

Mammalian translation elongation factors eEF1A1 and eEF1A2 are 92% homologous isoforms whose mutually exclusive tissue-specific expression is regulated during development. The isoforms have similar translation functionality, but show differences in spatial organization and participation in various processes, such as oncogenesis and virus reproduction. The differences may be due to their ability to interact with isoform-specific partner proteins.

View Article and Find Full Text PDF

The largest group of viruses in the Baltimore classification system comprises viruses with a positive-sense, single-stranded RNA genome. Once the viral genome is released into the cytoplasm of a specific host cell following virus entry, it functions directly as an mRNA, and the virus-encoded proteins that are essential for genome replication are produced by the translation apparatus of the host cell. The positive-sense genome is replicated in two stages, initially the positive strand is copied to make a negative-sense RNA, which then functions as the template for transcription of many new positive-sense genomes.

View Article and Find Full Text PDF

According to the traditional view, GTPases act as molecular switches, which cycle between distinct 'on' and 'off' conformations bound to GTP and GDP, respectively. Translation elongation factor EF-Tu is a GTPase essential for prokaryotic protein synthesis. In its GTP-bound form, EF-Tu delivers aminoacylated tRNAs to the ribosome as a ternary complex.

View Article and Find Full Text PDF

The GTPase elongation factor EF-Tu delivers aminoacyl-tRNAs to the mRNA-programmed ribosome during translation. Cognate codon-anticodon interaction stimulates GTP hydrolysis within EF-Tu. It has been proposed that EF-Tu undergoes a large conformational change subsequent to GTP hydrolysis, which results in the accommodation of aminoacyl-tRNA into the ribosomal A-site.

View Article and Find Full Text PDF

Approximately 30% of the ATP generated in the living cell is utilized by P-type ATPase primary active transporters to generate and maintain electrochemical gradients across biological membranes. P-type ATPases undergo large conformational changes during their functional cycle to couple ATP hydrolysis in the cytoplasmic domains to ion transport across the membrane. The Ca(2+)-ATPase from Listeria monocytogenes, LMCA1, was found to be a suitable model of P-type ATPases and was engineered to facilitate single-molecule FRET studies of transport-related structural changes.

View Article and Find Full Text PDF

Upon infection of Escherichia coli by bacteriophage Qβ, the virus-encoded β-subunit recruits host translation elongation factors EF-Tu and EF-Ts and ribosomal protein S1 to form the Qβ replicase holoenzyme complex, which is responsible for amplifying the Qβ (+)-RNA genome. Here, we use X-ray crystallography, NMR spectroscopy, as well as sequence conservation, surface electrostatic potential and mutational analyses to decipher the roles of the β-subunit and the first two oligonucleotide-oligosaccharide-binding domains of S1 (OB1-2) in the recognition of Qβ (+)-RNA by the Qβ replicase complex. We show how three basic residues of the β subunit form a patch located adjacent to the OB2 domain, and use NMR spectroscopy to demonstrate for the first time that OB2 is able to interact with RNA.

View Article and Find Full Text PDF

The G-protein EF-Tu, which undergoes a major conformational change when EF-Tu·GTP is converted to EF-Tu·GDP, forms part of an aminoacyl(aa)-tRNA·EF-Tu·GTP ternary complex (TC) that accelerates the binding of aa-tRNA to the ribosome during peptide elongation. Such binding, placing a portion of EF-Tu in contact with the GTPase Associated Center (GAC), is followed by GTP hydrolysis and Pi release, and results in formation of a pretranslocation (PRE) complex. Although tRNA movement through the ribosome during PRE complex formation has been extensively studied, comparatively little is known about the dynamics of EF-Tu interaction with either the ribosome or aa-tRNA.

View Article and Find Full Text PDF

Translation elongation factor EF-Tu belongs to the superfamily of guanine-nucleotide binding proteins, which play key cellular roles as regulatory switches. All G-proteins require activation via exchange of GDP for GTP to carry out their respective tasks. Often, guanine-nucleotide exchange factors are essential to this process.

View Article and Find Full Text PDF

The universally conserved translation elongation factor EF-Tu delivers aminoacyl(aa)-tRNA in the form of an aa-tRNA·EF-Tu·GTP ternary complex (TC) to the ribosome where it binds to the cognate mRNA codon within the ribosomal A-site, leading to formation of a pretranslocation (PRE) complex. Here we describe preparation of QSY9 and Cy5 derivatives of the variant E348C-EF-Tu that are functional in translation elongation. Together with fluorophore derivatives of aa-tRNA and of ribosomal protein L11, located within the GTPase associated center (GAC), these labeled EF-Tus allow development of two new FRET assays that permit the dynamics of distance changes between EF-Tu and both L11 (Tu-L11 assay) and aa-tRNA (Tu-tRNA assay) to be determined during the decoding process.

View Article and Find Full Text PDF

Background: The oncogene PTI-1 was originally isolated from a prostate cancer cell line by its capability to transform rat fibroblasts. The PTI-1 mRNA has a very eccentric structure as the 5'UTR is similar to prokaryotic 23S rRNA, while the major open reading frame and the 3'UTR corresponds to a part of the mRNA encoding human translation elongation factor eEF1A1. Thus, the largest open reading frame encodes a truncated version of eEF1A1 lacking the first 67 amino acids, while having three unique N-terminal amino acids.

View Article and Find Full Text PDF

During translation, the nucleic acid language employed by genes is translated into the amino acid language used by proteins. The translator is the ribosome, while the dictionary employed is known as the genetic code. The genetic information is presented to the ribosome in the form of a mRNA, and tRNAs connect the two languages.

View Article and Find Full Text PDF

Legionella pneumophila, which is the causative organism of Legionnaireś disease, translocates numerous effector proteins into the host cell cytosol by a type IV secretion system during infection. Among the most potent effector proteins of Legionella are glucosyltransferases (lgt's), which selectively modify eukaryotic elongation factor (eEF) 1A at Ser-53 in the GTP binding domain. Glucosylation results in inhibition of protein synthesis.

View Article and Find Full Text PDF

Transcript-selective translational regulation of epithelial-mesenchymal transition (EMT) by transforming growth factor-β (TGF-β) is directed by the hnRNP E1-containing TGF-β-activated-translational (BAT) mRNP complex. Herein, eukaryotic elongation factor-1 A1 (eEF1A1) is identified as an integral component of the BAT complex. Translational silencing of Dab2 and ILEI, two EMT transcripts, is mediated by the binding of hnRNP E1 and eEF1A1 to their 3'UTR BAT element, whereby hnRNP E1 stalls translational elongation by inhibiting the release of eEF1A1 from the ribosomal A site.

View Article and Find Full Text PDF

The RNA-dependent RNA polymerase core complex formed upon infection of Escherichia coli by the bacteriophage Qbeta is composed of the viral catalytic beta-subunit as well as the host translation elongation factors EF-Tu and EF-Ts, which are required for initiation of RNA replication. We have determined the crystal structure of the complex between the beta-subunit and the two host proteins to 2.5-A resolution.

View Article and Find Full Text PDF

Here we describe the design, preparation and characterization of 10 EF-Tu mutants of potential utility for the study of Escherichia coli elongation factor Tu (EF-Tu) interaction with tRNA by a fluorescence resonance energy transfer assay. Each mutant contains a single cysteine residue at positions in EF-Tu that are proximal to tRNA sites within the aminoacyl-tRNA.EF-Tu.

View Article and Find Full Text PDF

Eukaryotic translation elongation factor 1A (eEF1A) is a guanine-nucleotide binding protein, which transports aminoacylated tRNA to the ribosomal A site during protein synthesis. In a yeast two-hybrid screening of a human skeletal muscle cDNA library, a novel eEF1A binding protein, immunoglobulin-like and fibronectin type III domain containing 1 (IGFN1), was discovered, and its interaction with eEF1A was confirmed in vitro. IGFN1 is specifically expressed in skeletal muscle and presents immunoglobulin I and fibronectin III sets of domains characteristic of sarcomeric proteins.

View Article and Find Full Text PDF

The ribosome is the macromolecular machine responsible for translating the genetic code into polypeptide chains. Despite impressive structural and kinetic studies of the translation process, a number of challenges remain with respect to understanding the dynamic properties of the translation apparatus. Single-molecule techniques hold the potential of characterizing the structural and mechanical properties of macromolecules during their functional cycles in real time.

View Article and Find Full Text PDF

The interactions of elongation factor 1A (eEF1A) from Saccharomyces cerevisiae with elongation factor 1Balpha (eEF1Balpha), guanine nucleotides, and aminoacyl-tRNA were studied kinetically by fluorescence stopped-flow. eEF1A has similar affinities for GDP and GTP, 0.4 and 1.

View Article and Find Full Text PDF

Elongation factor Ts (EF-Ts) is the guanine nucleotide exchange factor for elongation factor Tu (EF-Tu). An important feature of the nucleotide exchange is the structural rearrangement of EF-Tu in the EF-Tu.EF-Ts complex caused by insertion of Phe-81 of EF-Ts between His-84 and His-118 of EF-Tu.

View Article and Find Full Text PDF

The prostate tumor-inducing gene 1 (PTI-1) transcript is detected in various human carcinoma cells. PTI-1 is reported to consist of a 5' untranslated region (5' UTR) homologous to mycoplasma 23S rRNA and a coding region corresponding to a truncated and mutated form of the translation elongation factor 1A, eEF1A. We have found that the PTI-1 transcript may encode a truncated, but not mutated, form of the human isoform eEF1A1.

View Article and Find Full Text PDF

Elongation factor Ts (EF-Ts) is the guanine nucleotide-exchange factor for elongation factor Tu (EF-Tu) that is responsible for promoting the binding of aminoacyl-tRNA to the mRNA-programmed ribosome. The structure of the Escherichia coli EF-Tu-EF-Ts complex reveals a protruding antiparallel coiled-coil motif in EF-Ts, which is responsible for the dimerization of EF-Ts in the crystal. In this study, the sequence encoding the coiled-coil motif in EF-Ts was deleted from the genome in Escherichia coli by gene replacement.

View Article and Find Full Text PDF

Elongation factor Ts (EF-Ts) is the guanine-nucleotide exchange factor of elongation factor Tu (EF-Tu), which promotes the binding of aminoacyl-tRNA to the mRNA-programmed ribosome in prokaryotes. The EF-Tu.EF-Ts complex, one of the EF-Tu complexes during protein synthesis, is also a component of RNA-dependent RNA polymerases like the polymerase from coliphage Qbeta.

View Article and Find Full Text PDF

The ribosome is universally responsible for synthesizing proteins by translating the genetic code transcribed in mRNA into an amino acid sequence. Ribosomes use cellular accessory proteins, soluble transfer RNAs, and metabolic energy to accomplish the initiation, elongation, and termination of peptide synthesis. In translocating processively along the mRNA template during the elongation cycle, ribosomes act as supramolecular motors.

View Article and Find Full Text PDF

The RNA genome of coliphage Qbeta is replicated by a complex of four proteins, one of them being the translation elongation factor Tu. The role of EF-Tu in this RNA polymerase complex is still unclear, but the obligate presence of translationally functional EF-Tu in the cell hampers the use of conventional mutational analysis. Therefore, we designed a system based on affinity chromatography and could separate two types of complexes by placing an affinity tag on mutated EF-Tu species.

View Article and Find Full Text PDF