The three-dimensional structure of proteins is traditionally organized into hierarchical levels, specifically secondary structures and domains. However, different studies suggest the existence of intermediate levels, such as Protein Units (PUs), which provide a refined understanding of protein architecture. PUs, characterized by their compactness and independence, serve as an intermediate organizational level, bridging the gap between secondary structures and domains.
View Article and Find Full Text PDFMotivation: Alignment of protein structures is a major problem in structural biology. The first approach commonly used is to consider proteins as rigid bodies. However, alignment of protein structures can be very complex due to conformational variability, or complex evolutionary relationships between proteins such as insertions, circular permutations or repetitions.
View Article and Find Full Text PDFE-cadherin and EGFR are known to be closely associated hence regulating differentiation and proliferation notably in epithelia. We have previously shown that galectin-7 binds to E-cadherin and favors its retention at the plasma membrane. In this study, we shed in light that galectin-7 establishes a physical link between E-cadherin and EGFR.
View Article and Find Full Text PDFKnottins, or inhibitor cystine knots (ICKs), are ultra-stable miniproteins with multiple applications in drug design and medical imaging. These widespread and functionally diverse proteins are characterized by the presence of three interwoven disulfide bridges in their structure, which form a unique pseudoknot. Since 2004, the KNOTTIN database (www.
View Article and Find Full Text PDF