Serum-derived bovine immunoglobulin (SBI) prevents translocation and inflammation via direct binding of microbial components. Recently, SBI also displayed potential benefits through gut microbiome modulation. To confirm and expand upon these preliminary findings, SBI digestion and colonic fermentation were investigated using the clinically predictive ex vivo SIFR technology (for 24 human adults) that was, for the first time, combined with host cells (epithelial/immune (Caco-2/THP-1) cells).
View Article and Find Full Text PDFDespite the discovery of modified nucleic acids nearly 75 years ago, their biological functions are still being elucidated. N -methyladenosine (m A) is the most abundant modification in eukaryotic messenger RNA (mRNA) and has also been detected in non-coding RNAs, including long non-coding RNA, ribosomal RNA, and small nuclear RNA. In general, m A marks can alter RNA secondary structure and initiate unique RNA-protein interactions that can alter splicing, mRNA turnover, and translation, just to name a few.
View Article and Find Full Text PDFRecent studies suggest noncoding RNAs interact with genomic DNA, forming RNA•DNA-DNA triple helices, as a mechanism to regulate transcription. One way cells could regulate the formation of these triple helices is through RNA modifications. With over 140 naturally occurring RNA modifications, we hypothesize that some modifications stabilize RNA•DNA-DNA triple helices while others destabilize them.
View Article and Find Full Text PDFThe chemical identity of RNA molecules beyond the four standard ribonucleosides has fascinated scientists since pseudouridine was characterized as the "fifth" ribonucleotide in 1951. Since then, the ever-increasing number and complexity of modified ribonucleosides have been found in viruses and throughout all three domains of life. Such modifications can be as simple as methylations, hydroxylations, or thiolations, complex as ring closures, glycosylations, acylations, or aminoacylations, or unusual as the incorporation of selenium.
View Article and Find Full Text PDFRecent studies suggest noncoding RNAs interact with genomic DNA, forming an RNA•DNA-DNA triple helix that regulates gene expression. However, base triplet composition of pyrimidine motif RNA•DNA-DNA triple helices is not well understood beyond the canonical U•A-T and C•G-C base triplets. Using native gel-shift assays, the relative stability of 16 different base triplets at a single position, Z•X-Y (where Z = C, U, A, G and X-Y = A-T, G-C, T-A, C-G), in an RNA•DNA-DNA triple helix was determined.
View Article and Find Full Text PDF