Publications by authors named "Charlotte M Piard"

In this work, we combined three-dimensional (3D) scaffolds with flow perfusion bioreactors to evaluate the gradient effects of scaffold architecture and mechanical stimulation, respectively, on tumor cell phenotype. As cancer biologists elucidate the relevance of 3D in vitro tumor models within the drug discovery pipeline, it has become more compelling to model the tumor microenvironment and its impact on tumor cells. In particular, permeability gradients within solid tumors are inherently complex and difficult to accurately model in vitro.

View Article and Find Full Text PDF

3D printing has emerged as an important technique for fabricating tissue engineered scaffolds. However, systematic evaluations of biomaterials for 3D printing have not been widely investigated. We evaluated poly(propylene fumarate) (PPF) as a model material for extrusion-based printing applications.

View Article and Find Full Text PDF

This study evaluated the structural, mechanical, and cytocompatibility changes of three-dimensional (3D) printed porous polymer scaffolds during degradation. Three porous scaffold designs were fabricated from a poly(propylene fumarate) (PPF) resin. PPF is a hydrolytically degradable polymer that has been well characterized for applications in bone tissue engineering.

View Article and Find Full Text PDF