Publications by authors named "Charlotte Krawczyk"

Continuous monitoring of volcanic gas emissions is crucial for understanding volcanic activity and potential eruptions. However, emissions of volcanic gases underwater are infrequently studied or quantified. This study explores the potential of Distributed Acoustic Sensing (DAS) technology to monitor underwater volcanic degassing.

View Article and Find Full Text PDF

Distributed Dynamic Strain Sensing (DDSS), also known as Distributed Acoustic Sensing (DAS), is becoming a popular tool in array seismology. A new generation of engineered fibers is being developed to improve sensitivity and reduce the noise floor in comparison to standard fibers, which are conventionally used in telecommunication networks. Nevertheless, standard fibers already have extensive coverage around the Earth's surface, so it motivates the use of the existing infrastructure in DDSS surveys to avoid costs and logistics.

View Article and Find Full Text PDF

Volcano-seismic signals can help for volcanic hazard estimation and eruption forecasting. However, the underlying mechanism for their low frequency components is still a matter of debate. Here, we show signatures of dynamic strain records from Distributed Acoustic Sensing in the low frequencies of volcanic signals at Vulcano Island, Italy.

View Article and Find Full Text PDF

Understanding physical processes prior to and during volcanic eruptions has improved significantly in recent years. However, uncertainties about subsurface structures distorting observed signals and undetected processes within the volcano prevent volcanologists to infer subtle triggering mechanisms of volcanic phenomena. Here, we demonstrate that distributed acoustic sensing (DAS) with optical fibres allows us to identify volcanic events remotely and image hidden near-surface volcanic structural features.

View Article and Find Full Text PDF

Natural hazard prediction and efficient crust exploration require dense seismic observations both in time and space. Seismological techniques provide ground-motion data, whose accuracy depends on sensor characteristics and spatial distribution. Here we demonstrate that dynamic strain determination is possible with conventional fibre-optic cables deployed for telecommunication.

View Article and Find Full Text PDF

The Dead Sea region has faced substantial environmental challenges in recent decades, including water resource scarcity, ~1m annual decreases in the water level, sinkhole development, ascending-brine freshwater pollution, and seismic disturbance risks. Natural processes are significantly affected by human interference as well as by climate change and tectonic developments over the long term. To get a deep understanding of processes and their interactions, innovative scientific approaches that integrate disciplinary research and education are required.

View Article and Find Full Text PDF