Phosphorus (P) losses from tile-drained agricultural fields may degrade surface water quality by accelerating eutrophication. Among the different edge-of-field technologies, compact filter systems using different filter materials have been identified as potentially effective solutions for removing P from drainage water before discharge downstream. This study investigated the long-term (>696 days) P removal efficiency of 5 different filter materials in a column setup, using artificial drainage water (pH 6).
View Article and Find Full Text PDFSubsurface flow constructed wetlands with wood chips (SSF-CWs) have proven to effectively reduce the loss of nitrogen (N) from agricultural fields to surface water, however in some cases production of negative side effects such as methane and phosphate occur. We examined if these side effects can be avoided by decreasing the hydraulic retention time (HRT) from on average 82 h to 11 h during summer to autumn in two pilot SSF-CWs. Furthermore, we investigated the potential of the SSF-CWs to reduce phosphorus (P) loss from agricultural drainage systems.
View Article and Find Full Text PDFThere is a limited understanding of solute transport properties of degraded peat soils as compared to mineral substrates. A lower organic matter (OM) content is often the result of peat degradation and mineralization following artificial drainage. In this study, we aimed at deducing changes in solute transport properties of peat soils differing in OM content.
View Article and Find Full Text PDFBiogeochemical processes in subsurface flow constructed wetlands are influenced by flow direction, degree of saturation and influent loading position. This study presents a simulation tool, which aims to predict the performance of the unit and improve the design. The model was developed using the HYDRUS program, calibrated and verified on previously measured bromide (Br) pulse tracer tests.
View Article and Find Full Text PDFOrganic waste fertilizers have previously been observed to significantly affect soil organic carbon (SOC) content and soil structure. However, the effect of organic waste fertilizers on colloid dispersibility and leaching of colloids from topsoil has not yet been studied extensively. We investigated how the repeated application of different types of agricultural (liquid cattle slurry and solid cattle manure) and urban waste fertilizers (sewage sludge and composted organic household waste) affected soil physical properties, colloid dispersion from aggregates, tracer transport, and colloid leaching from intact soil cores.
View Article and Find Full Text PDFThe recycling of urban waste products as fertilizers in agriculture may introduce contaminants such as heavy metals into soil that may leach and contaminate groundwater. In the present study, we investigated the leaching of heavy metals from intact soil cores collected in the long-term agricultural field trial CRUCIAL. At the time of sampling, the equivalent of >100 yr of urban waste fertilizers following Danish legislation had been applied.
View Article and Find Full Text PDFUnregulated and event-driven agricultural tile drainage discharge poses several challenges that potentially limit the nitrate (NO) removal performance of woodchip-based wetlands constructed to intercept subsurface tile drain flows. Laboratory column tests were conducted to evaluate the biogeochemical response of mixed reactive media (woodchips-seashells and woodchips-Filtralite mixtures) at two woodchip ratios to changes in hydraulic loading rate (HLR). The tests involved continuous loading of aerated artificial drainage water spiked with NO-N and tritium (HO) breakthrough experiments.
View Article and Find Full Text PDFPhosphorus retention in lowland soils depends on redox conditions. The aim of this study was to evaluate how the Fe(III) reduction degree affects phosphate adsorption and precipitation. Two similarly P-saturated, ferric Fe-rich lowland soils, a sandy and a peat soil, were incubated under anaerobic conditions.
View Article and Find Full Text PDFManaging phosphorus (P) losses in soil leachate folllowing land application of manure is key to curbing eutrophication in many regions. We compared P leaching from columns of variably textured, intact soils (20 cm diam., 20 cm high) subjected to surface application or injection of dairy cattle (Bos taurus L.
View Article and Find Full Text PDFLand application of manure can exacerbate nutrient and contaminant transfers to the aquatic environment. This study examined the effect of injecting a dairy cattle (Bostaurus L.) manure slurry on mobilization and leaching of dissolved, nonreactive slurry components across a range of agricultural soils.
View Article and Find Full Text PDFPhosphate (P(i)) release due to Fe(III) oxide dissolution is well documented for soils undergoing reduction. The P(i) sorption properties of soils in anoxic conditions are, however, still under consideration. In this investigation, P(i) sorption to strictly anoxic soils was compared with oxic conditions to assess the potential of lowland soils to function as traps for P(i) when flooded with drainage water.
View Article and Find Full Text PDFGround water and surface water interactions are of fundamental importance for the biogeochemical processes governing phosphorus (P) dynamics in riparian buffers. The four most important conceptual hydrological pathways for P losses from and P retention in riparian buffers are reviewed in this paper: (i) The diffuse flow path with ground water flow through the riparian aquifer, (ii) the overland flow path across the riparian buffer with water coming from adjacent agricultural fields, (iii) irrigation of the riparian buffer with tile drainage water from agricultural fields where disconnected tile drains irrigate the riparian buffer, and (iv) inundation of the riparian buffer (floodplain) with river water during short or longer periods. We have examined how the different flow paths in the riparian buffer influence P retention mechanisms theoretically and from empirical evidence.
View Article and Find Full Text PDF