Publications by authors named "Charlotte Jane Stagg"

Transcranial direct current stimulation (tDCS) has been used to modify motor performance in healthy and patient populations. However, our understanding of the large-scale neuroplastic changes that support such behavioural effects is limited. Here, we used both seed-based and independent component analyses (ICA) approaches to probe tDCS-induced modifications in resting state activity with the aim of establishing the effects of tDCS applied to the primary motor cortex (M1) on both motor and non-motor networks within the brain.

View Article and Find Full Text PDF

Transcranial direct current stimulation (TDCS) of primary motor cortex (M1) can transiently improve paretic hand function in chronic stroke. However, responses are variable so there is incentive to try to improve efficacy and or to predict response in individual patients. Both excitatory (Anodal) stimulation of ipsilesional M1 and inhibitory (Cathodal) stimulation of contralesional M1 can speed simple reaction time.

View Article and Find Full Text PDF

Transcranial direct current stimulation, a form of non-invasive brain stimulation, is showing increasing promise as an adjunct therapy in rehabilitation following stroke. However, although significant behavioural improvements have been reported in proof-of-principle studies, the underlying mechanisms are poorly understood. The rationale for transcranial direct current stimulation as therapy for stroke is that therapeutic stimulation paradigms increase activity in ipsilesional motor cortical areas, but this has not previously been directly tested for conventional electrode placements.

View Article and Find Full Text PDF

We examined white matter abnormalities in patients with a distinctive extrapyramidal syndrome due to intravenous methcathinone (ephedrone) abuse. We performed diffusion tensor imaging in 10 patients and 15 age-matched controls to assess white matter structure across the whole brain. Diffuse significant decreases in white matter fractional anisotropy, a diffusion tensor imaging metric reflecting microstructural integrity, occurred in patients compared with controls.

View Article and Find Full Text PDF