Background: Survivors of cardiac arrest often experience neurologic deficits. To date, treatment options are limited. Associated hyperglycemia is believed to further worsen the neurologic outcome.
View Article and Find Full Text PDFA major component of the damaging effect after traumatic brain injury (TBI) is activation of the inflammatory system. In particular, chemokines and chemokine-regulated factors become activated in resident brain cells and signal to different invading immune cells. For evaluation of the effect on invading cells 3 days after injury, mice were treated with a single initial dose of the anti-inflammatory agent Rabeximod in an experimental TBI model.
View Article and Find Full Text PDFBrain trauma is known to activate inflammatory cells via various chemokine signals although their interactions remain to be characterized. Mice deficient in Ccl3, Ccr2 or Cxcl10 were compared with wildtype mice after controlled cortical impact injury. Expression of Ccl3 in wildtypes was rapidly upregulated in resident, regularly spaced reactive microglia.
View Article and Find Full Text PDFPurpose: When central nervous system axons are injured, regeneration is partly inhibited by myelin-associated inhibitors (MAIs). Following traumatic brain injury (TBI) in the rat, pharmacological neutralisation of the MAIs Nogo-A and myelin-associated glycoprotein (MAG) resulted in improved functional outcome. In contrast, genetic or pharmacological neutralization of the MAI receptors Nogo-66 receptor 1 (NgR1) or paired-immunoglobulin like receptor-B (PirB) showed an unaltered or impaired outcome following TBI in mice.
View Article and Find Full Text PDFWe investigated the role of the axon guidance molecule EphA4 following traumatic brain injury (TBI) in mice. Neutralization of EphA4 improved motor function and axonal regeneration following experimental spinal cord injury (SCI). We hypothesized that genetic absence of EphA4 could improve functional and histological outcome following TBI.
View Article and Find Full Text PDFIncreasing evidence suggests that interleukin-1β (IL-1β) is a key mediator of the inflammatory response following traumatic brain injury (TBI). Recently, we showed that intracerebroventricular administration of an IL-1β-neutralizing antibody was neuroprotective following TBI in mice. In the present study, an anti-IL-1β antibody or control antibody was administered intraperitoneally following controlled cortical injury (CCI) TBI or sham injury in 105 mice and we extended our histological, immunological and behavioral analysis.
View Article and Find Full Text PDFRestor Neurol Neurosci
November 2010
Purpose: Astroglial responses after traumatic brain injury are difficult to detect with routine morphological methods. The aims for this study were to compare the temporal and spatial expression pattern of vimentin- and glial fibrillary acidic protein (GFAP) in a weight drop model of mild cerebral contusion injury in the rat. We also wanted to study the vimentin response with immunohistochemistry and vimentin mRNA RT-PCR analysis in severe cortical contusion injury produced by the controlled cortical impact in the mouse.
View Article and Find Full Text PDFTraumatic brain injury (TBI) in the mouse results in the rapid appearance of scattered clusters of cells expressing the chemokine Cxcl10 in cortical and subcortical areas. To extend the observation of this unique pattern, we used neuropathological mouse models using quantitative reverse transcriptase-polymerase chain reaction, gene array analysis, in-situ hybridization and flow cytometry. As for TBI, cell clusters of 150-200 mum expressing Cxcl10 characterize the cerebral cortex of mice carrying a transgene encoding the Swedish mutation of amyloid precursor protein, a model of amyloid Alzheimer pathology.
View Article and Find Full Text PDFCerebral gene expression changes in response to traumatic brain injury will provide useful information in the search for future trauma treatment. In order to characterize the outcome of mild brain injury, we studied C57BL/6J mice in a weight-drop, closed head injury model. At various times post-injury, mRNA was isolated from neocortex and hippocampus and transcriptional alterations were studied using quantitative reverse transcriptase PCR and gene array analysis.
View Article and Find Full Text PDFCerebral gene expressions change in response to traumatic brain injury (TBI), and future trauma treatment may improve with increased knowledge about these regulations. We subjected C57BL/6J mice to injury by controlled cortical impact (CCI). At various time points post-injury, mRNA from neocortex and hippocampus was isolated, and transcriptional alterations studied using quantitative real-time polymerase chain reaction (PCR) and gene array analysis.
View Article and Find Full Text PDFThree genetic mouse models were examined to define effects of bone morphogenetic protein (BMP) signalling on gene expression in normal and injured adult brain. CaMKII-Cre eliminated the BMP receptor Acvr1 (Alk2) and the common TGFbeta superfamily signal mediator Smad4 or activated a constitutively active Acvr1 in postnatal forebrain neurons. All mutants followed mendelian ratios, with no overt phenotypic changes.
View Article and Find Full Text PDF