Background: Enhanced liver fibrosis (ELF) score is an accurate, noninvasive test for assessing the severity of liver fibrosis in chronic liver disease, including alcohol-related liver disease. However, whether the ELF score changes during alcohol withdrawal is unknown. This pilot study assessed changes in the ELF score during withdrawal in patients with a history of excessive alcohol intake.
View Article and Find Full Text PDFOxytocin (OT), a neuropeptide best known for its role in emotional and social behaviors, has been linked to osteoarthritis (OA). This study aimed to investigate the serum OT level in hip and/or knee OA patients and to study its association with disease progression. Patients from the KHOALA cohort with symptomatic hip and/or knee OA (Kellgren and Lawrence (KL) scores of 2 and 3) and follow-up at 5 years were included in this analysis.
View Article and Find Full Text PDFDiabetes mellitus is a major public health problem in all countries due to its high human and economic burden. Major metabolic alterations are associated with the chronic hyperglycemia that characterizes diabetes and causes devastating complications, including retinopathy, kidney failure, coronary disease and increased cardiovascular mortality. The most common form is type 2 diabetes (T2D) accounting for 90 to 95% of the cases.
View Article and Find Full Text PDFEndocrine Disrupting Compounds (EDCs) are found in everyday products. Widely distributed throughout the environment, persistent organic pollutants (POPs) are a specific class of EDCs that can accumulate in adipose tissue. Many of them induce adverse effects on human health-such as obesity, fertility disorders and cancers-by perturbing hormone effects.
View Article and Find Full Text PDFFront Endocrinol (Lausanne)
January 2022
Obesity is a major public health concern at the origin of many pathologies, including cancers. Among them, the incidence of gastro-intestinal tract cancers is significantly increased, as well as the one of hormone-dependent cancers. The metabolic changes caused by overweight mainly with the development of adipose tissue (AT), insulin resistance and chronic inflammation induce hormonal and/or growth factor imbalances, which impact cell proliferation and differentiation.
View Article and Find Full Text PDFTo adapt in an ever-changing environment, cells must integrate physical and chemical signals and translate them into biological meaningful information through complex signaling pathways. By combining lipidomic and proteomic approaches with functional analysis, we have shown that ubiquitin domain-containing protein 1 (UBTD1) plays a crucial role in both the epidermal growth factor receptor (EGFR) self-phosphorylation and its lysosomal degradation. On the one hand, by modulating the cellular level of ceramides through N-acylsphingosine amidohydrolase 1 (ASAH1) ubiquitination, UBTD1 controls the ligand-independent phosphorylation of EGFR.
View Article and Find Full Text PDFThe G protein-coupled estrogen receptor (GPER), also known as GPR30, is a widely conserved 7-transmembrane-domain protein which has been identified as a novel 17β-estradiol-binding protein that is structurally distinct from the classic oestrogen receptors (ERα and ERβ). There are still conflicting data regarding the exact role and the natural ligand of GPER/GPR30 in reproductive tracts as both male and female knock-out mice are fertile and have no abnormalities of reproductive organs. Testicular germ cell cancers (TGCCs) are the most common malignancy in young males and the most frequent cause of death from solid tumors in this age group.
View Article and Find Full Text PDFEnhanced beta cell glycolytic and oxidative metabolism are necessary for glucose-induced insulin secretion. While several microRNAs modulate beta cell homeostasis, miR-375 stands out as it is highly expressed in beta cells where it regulates beta cell function, proliferation and differentiation. As glucose metabolism is central in all aspects of beta cell functioning, we investigated the role of miR-375 in this process using human and rat islets; the latter being an appropriate model for in-depth investigation.
View Article and Find Full Text PDFBiochim Biophys Acta Mol Basis Dis
September 2019
MicroRNAs (miRNAs) are important modulators of thermogenic brown adipose tissue (BAT). They have been involved in its differentiation and hence its functioning. While different regulators of the miRNA machinery have been shown to be essential for BAT differentiation, little is known about their implication in BAT activation.
View Article and Find Full Text PDFEpidemiological and animal studies show that deleterious maternal environments predispose aging offspring to metabolic disorders and type 2 diabetes. Young progenies in a rat model of maternal low-protein (LP) diet are normoglycemic despite collapsed insulin secretion. However, without further worsening of the insulin secretion defect, glucose homeostasis deteriorates in aging LP descendants.
View Article and Find Full Text PDFHuman brown adipocytes are able to burn fat and glucose and are now considered as a potential strategy to treat obesity, type 2 diabetes and metabolic disorders. Besides their thermogenic function, brown adipocytes are able to secrete adipokines. One of these is visfatin, a nicotinamide phosphoribosyltransferase involved in nicotinamide dinucleotide synthesis, which is known to participate in the synthesis of insulin by pancreatic β cells.
View Article and Find Full Text PDFThe explosive increase in the worldwide prevalence of diabetes over recent years has transformed the disease into a major public health concern. While diabetes can be screened for and diagnosed by reliable biological tests based on blood glucose levels, by and large there are no means of detecting at-risk patients or of following diabetic complications. The recent discovery that microRNAs are not only chief intracellular players in many biological processes, including insulin secretion and action, but are also circulating, has put them in the limelight as possible biological markers.
View Article and Find Full Text PDFThe intrauterine environment of the fetus is a preeminent actor in long-term health. Indeed, mounting evidence shows that maternal malnutrition increases the risk of type 2 diabetes (T2D) in progeny. Although the consequences of a disturbed prenatal environment on the development of the pancreas are known, the underlying mechanisms are poorly defined.
View Article and Find Full Text PDFBackground: Oligosaccharidoses, which belong to the lysosomal storage diseases, are inherited metabolic disorders due to the absence or the loss of function of one of the enzymes involved in the catabolic pathway of glycoproteins and indirectly of glycosphingolipids. This enzymatic deficiency typically results in the abnormal accumulation of uncompletely degraded oligosaccharides in the urine. Since the clinical features of many of these disorders are not specific for a single enzyme deficiency, unambiguous screening is critical to limit the number of costly enzyme assays which otherwise must be performed.
View Article and Find Full Text PDFSoon after their discovery microRNA (miRNA) emerged as central natural regulators of gene expression. Although the complex mechanisms of action and impact of miRNA on development, physiology and disease are still elusive, significant progress has been made in deciphering the roles of some miRNA in insulin secretion and action. Here we examine the close relationship existing between miRNA and glucose metabolism as well as their putative role in the pathogenesis of diabetes and their possible utility as biomarkers of this disease.
View Article and Find Full Text PDFIn record time, microRNAs (miRNAs) have acquired the respected stature of important natural regulators of global gene expression. Multiple studies have demonstrated that a large number of miRNAs are under the control of various metabolic stimuli, including nutrients, hormones, and cytokines. Conversely, it is now well recognized that miRNAs control metabolism, thereby generating a bidirectional functional link, which perturbs energy homeostasis in case of disconnection in the miRNA-metabolism interplay.
View Article and Find Full Text PDFAlthough infections with virulent pathogens often induce a strong inflammatory reaction, what drives the increased immune response to pathogens compared to nonpathogenic microbes is poorly understood. One possibility is that the immune system senses the level of threat from a microorganism and augments the response accordingly. Here, focusing on cytotoxic necrotizing factor 1 (CNF1), an Escherichia coli-derived effector molecule, we showed the host indirectly sensed the pathogen by monitoring for the effector that modified RhoGTPases.
View Article and Find Full Text PDFObjective: Investigating the dynamics of pancreatic β-cell mass is critical for developing strategies to treat both type 1 and type 2 diabetes. p53, a key regulator of the cell cycle and apoptosis, has mostly been a focus of investigation as a tumor suppressor. Although p53 alternative transcripts can modulate p53 activity, their functions are not fully understood.
View Article and Find Full Text PDFObjective: A major determinant of the progression from insulin resistance to the development of overt type 2 diabetes is a failure to mount an appropriate compensatory beta-cell hyperplastic response to maintain normoglycemia. We undertook the present study to directly explore the significance of the cell cycle protein cyclin D2 in the expansion of beta-cell mass in two different models of insulin resistance.
Research Design And Methods: We created compound knockouts by crossing mice deficient in cyclin D2 (D2KO) with either the insulin receptor substrate 1 knockout (IRS1KO) mice or the insulin receptor liver-specific knockout mice (LIRKO), neither of which develops overt diabetes on its own because of robust compensatory beta-cell hyperplasia.
Biochem Biophys Res Commun
December 2009
FoxO1 is a master regulator of signaling pathways used by growth factors and hormones, including insulin. Its activity is regulated by changes in subcellular localization coupled to post-translational modifications such as phosphorylation, ubiquitination, and acetylation. As microRNAs have emerged as a newly identified means by which cells fine-tune gene expression, we hypothesized that they could regulate FoxO1.
View Article and Find Full Text PDFType 1 and type 2 diabetes mellitus together are predicted to affect over 300 million people worldwide by the year 2020. A relative or absolute paucity of functional β-cells is a central feature of both types of disease, and identifying the pathways that mediate the embryonic origin of new β-cells and mechanisms that underlie the proliferation of existing β-cells are major efforts in the fields of developmental and islet biology. A poor secretory response of existing β-cells to nutrients and hormones and the defects in hormone processing also contribute to the hyperglycemia observed in type 2 diabetes and has prompted studies aimed at enhancing β-cell function.
View Article and Find Full Text PDFThe pancreatic islets of Langerhans, and especially the insulin-producing beta cells, play a central role in the maintenance of glucose homeostasis. Alterations in the expression of multiple proteins in the islets that contribute to the maintenance of islet function are likely to underlie the pathogenesis of types 1 and 2 diabetes. To identify proteins that constitute the islet proteome, we provide the first comprehensive proteomic characterization of pancreatic islets for mouse, the most commonly used animal model in diabetes research.
View Article and Find Full Text PDFInsulin and insulin-like growth factor 1 (IGF1) are ubiquitous growth factors that regulate proliferation in most mammalian tissues including pancreatic islets. To explore the specificity of insulin receptors in compensatory beta-cell growth, we examined two models of insulin resistance. In the first model, we used liver-specific insulin receptor knockout (LIRKO) mice, which exhibit hyperinsulinemia without developing diabetes due to a compensatory increase in beta-cell mass.
View Article and Find Full Text PDFRecently, our knowledge concerning the role of amino acids in signal transduction in mammals has greatly improved. This significant advance is mainly due to the remarkable discovery that the mammalian target of rapamycin (mTOR) protein kinase, known to be activated in response to a large number of hormones, growth factors and cytokines, is also under the tight control of branched-chain amino acids. Actually, both inputs are necessary to fully activate the mTOR pathway, the main function of which is to increase cell size, via the regulation of translational processes.
View Article and Find Full Text PDFAmino acids are nutrients responsible for mammalian target of rapamycin (mTOR) regulation in mammalian cells. The mTOR protein is mainly known for its role in regulating cell growth, notably via protein synthesis. In addition to amino acids, mTOR is regulated by insulin via a phosphatidylinositol 3-kinase (PI 3-kinase)-dependent pathway.
View Article and Find Full Text PDF