Publications by authors named "Charlotte Henkel"

Increasing chemical pollution is a threat to sustainable water resources worldwide. Plastics and harmful additives released from plastics add to this burden and might pose a risk to aquatic organisms, and human health. Phthalates, which are common plasticizers and endocrine-disrupting chemicals, are released from polyvinyl chloride (PVC) microplastics and are a cause of concern.

View Article and Find Full Text PDF

Phthalic acid esters (phthalates) are an important group of additives (plasticizers) to ensure the flexibility and stability especially of polyvinyl chloride (PVC) and to enable its processing. However, phthalates like di(2-ethylhexyl) phthalate (DEHP) are harmful for aquatic organisms due to their endocrine disrupting effects and toxicity. For the assessment of exposure concentrations, thorough understanding of leaching kinetics of phthalates from PVC (micro-) plastics into aqueous environments is necessary.

View Article and Find Full Text PDF

Phthalic acid esters (phthalates) have been detected everywhere in the environment, but data on leaching kinetics and the governing mass transfer process into aqueous systems remain largely unknown. In this study, we experimentally determined time-dependent leaching curves for three phthalates di(2-ethylhexyl) phthalate, di(2-ethylhexyl) terephthalate, and diisononyl phthalate from polyvinyl chloride (PVC) microplastics and thereby enabled a better understanding of their leaching kinetics. This is essential for exposure assessment and to predict microplastic-bound environmental concentrations of phthalates.

View Article and Find Full Text PDF

Polyvinyl chloride (PVC) is the third most used polymer for plastic products in the European Union (+NO/ CH) and contains the highest amounts of additives, especially phthalic acid esters (phthalates). Leaching kinetics of additives from (micro-) plastics into aqueous environments are highly relevant for environmental risk assessment and modelling of the fluxes of plastics and its associated additives. Investigating the leaching of phthalates into aqueous environments in batch experiments is challenging due to their low solubility and high hydrophobicity and there are no standard methods to study release processes.

View Article and Find Full Text PDF