Publications by authors named "Charlotte Hagman"

The clinical immunogenicity assessment for complex multidomain biological drugs is challenging due to multiple factors that must be taken into consideration. Here, we describe a strategy to overcome multiple bioanalytical challenges in order to assess anti-drug antibodies (ADA) for a novel and unique chemically modified protein therapeutic. A risk-centered approach was adopted to evaluate the immunogenic response to a modified version of human growth differentiation factor 15 (GDF15) connected to an albumin-binding fatty acid via a polyethylene glycol (PEG) linker.

View Article and Find Full Text PDF

The development of a quantification method for monoclonal antibodies in serum has been accomplished by high-performance liquid chromatography multiple reactions monitoring mass spectrometry. A human monoclonal antibody (HmAb) was used as the model protein for method development and validation. A peptide from the CDR3-region of its heavy chain was selected and used for quantifying the entire mAb.

View Article and Find Full Text PDF

Information about protein conformation can be obtained with hydrogen/deuterium exchange (HDX) mass spectrometry. The isotopic solution-phase exchange of specific amide hydrogen atoms can be followed using low-vacuum nozzle-skimmer collision-induced dissociation (CID). In this study, the nozzle-skimmer technique was complemented by electron capture dissociation (ECD) Fourier transform ion cyclotron resonance mass spectrometry (FTICRMS).

View Article and Find Full Text PDF

Today, proteomics is an exciting approach to discover potential biomarkers of different disorders. One challenge with proteomics experiments is the wide concentration range of proteins in various tissues and body fluids. The most abundant component in human body fluids, human serum albumin (HSA), is present at concentrations corresponding to approximately 50% of the total protein content in, e.

View Article and Find Full Text PDF

In this study, the reproducibility of tryptic digestion of complex solutions was investigated using liquid chromatography Fourier transform ion cyclotron resonance (LC FT-ICR) mass spectrometry. Tryptic peptides, from human cerebrospinal fluid, (CSF) were labeled with Quantification-Using-Enhanced-Signal-Tags (QUEST)-markers, or 1-([H4]nicotinoyloxy)- and 1-([D4]nicotinoyloxy)-succinimide ester markers. The analysis was performed on abundant proteins with respect-to-intensity ratios and sequence coverage and obtained by comparing differently labeled components from one or different pools.

View Article and Find Full Text PDF

For the first time, quantitative analysis of tryptic protein mixtures, labeled with Quantification-Using-Enhanced-Signal-Tags (QUEST)-markers, were performed with electrospray ionization and a 9.4 T Fourier Transform Ion Cyclotron Resonance (FTICR) mass spectrometer. Coupling a High-Pressure Liquid Chromatography (HPLC) separation step prior to mass analysis resulted in an increased amount of identified labeled tryptic peptides.

View Article and Find Full Text PDF

The difficulty with integrating solution-phase hydrogen/deuterium exchange (HDX) and tandem mass spectrometry is that the energy added to cause fragmentation might promote gas-phase migration of the added deuterium atoms. Here, we compare the solution-phase HDX profiles generated from a- b- and y-type fragment ion series originating from capillary-skimmer dissociation. The isotopic distributions of fragments from the different fragment ion types were used to determine the isotopic state of the amide hydrogen within a specific residue.

View Article and Find Full Text PDF

Liquid chromatography mass spectrometry (LC-MS) is a valuable tool in the analysis of proteins and peptides. The combination of LC-MS with different fragmentation methods provides sequence information on components in complex mixtures. In this work, on-line packed capillary LC electrospray ionization Fourier transform ion cyclotron resonance MS was combined with two complementary fragmentation techniques, i.

View Article and Find Full Text PDF