Background: In a prior study, a DNA prime / adenovirus boost vaccine (DNA/Ad) expressing P. falciparum circumsporozoite protein (CSP) and apical membrane antigen-1 (AMA1) (NMRC-M3V-D/Ad-PfCA Vaccine) induced 27% protection against controlled human malaria infection (CHMI). To investigate the contribution of DNA priming, we tested the efficacy of adenovirus vaccine alone (NMRC-M3V-Ad-PfCA ) in a Phase 1 clinical trial.
View Article and Find Full Text PDFIntroduction: Malaria, tuberculosis (TB) and human immunodeficiency virus (HIV) are diseases with devastating effects on global public health, especially in the developing world. Clinical trials of candidate vaccines for these diseases are being conducted at an accelerating rate, and require accurate and consistent methods for safety data collection and reporting. We performed a systematic review of publications describing the safety results from clinical trials of malaria, TB and HIV vaccines, to ascertain the nature and consistency of safety data collection and reporting.
View Article and Find Full Text PDFBackground: A protective malaria vaccine will likely need to elicit both cell-mediated and antibody responses. As adenovirus vaccine vectors induce both these responses in humans, a Phase 1/2a clinical trial was conducted to evaluate the efficacy of an adenovirus serotype 5-vectored malaria vaccine against sporozoite challenge.
Methodology/principal Findings: NMRC-MV-Ad-PfC is an adenovirus vector encoding the Plasmodium falciparum 3D7 circumsporozoite protein (CSP).