A dual channel gas chromatograph with flame ionisation detectors has been used extensively for analysis of volatile organic compounds in the atmosphere and forms the basis of two monitoring instruments contributing VOC data to the World Meteorological Organisation - Global Atmosphere Watch network. Recent modifications to the methodology have broadened the scope of the instrument; to incorporate measurements of selected monoterpenes, and achieve improved accuracy in the measurement of oxygenated volatile organic compounds. Analysis of selected monoterpenes has been achieved without any significant loss of resolution of the non-methane hydrocarbons or oxygenated compounds.
View Article and Find Full Text PDFIntramolecular carbonyl ene reactions of highly activated enophiles can be catalysed by H-bonding thio-ureas to give tertiary alcohols in high yields without extensive isomerisation side products. An asymmetric variant of this reaction was realised using a chiral thiourea but was limited by low enantioselectivity (up to 33% e.e.
View Article and Find Full Text PDFRecent theoretical studies indicate that reactive organic iodocarbons such as CH2I2 would be extremely effective agents for tropospheric Arctic ozone depletion and that iodine compounds added to a Br2/BrCl mixture have a significantly greater ozone (and mercury) depletion effect than additional Br2 and BrCl molecules. Here we report the first observations of CH2I2, CH2IBr, and CH2ICl in Arctic air, as well as other reactive halocarbons including CHBr3, during spring at Kuujjuarapik, Hudson Bay. The organoiodine compounds were present atthe highest levels yet reported in air.
View Article and Find Full Text PDFEnviron Sci Technol
August 2005
Ultraviolet-visible absorption spectroscopy and purge-and-trap GC-MS were used to determine the rates and products of the photodissociation of low concentrations of CH2I2, CH2IBr, and CH2ICl in water, saltwater (0.5 M NaCl), and seawater in natural sunlight. Photoproducts of these reactions include iodide (I-) and, in salt- and seawater environments, CH2XCl (where X = Cl, Br, or I).
View Article and Find Full Text PDF