Grass-based suckling beef-derived foods occasionally exceed regulatory levels for polychlorinated biphenyls (PCBs) and dibenzo-p-dioxins/dibenzofurans (PCDD/Fs). Ensuring chemical safety requires understanding the cow-calf transgenerational PCB and PCDD/F fate. The current focus was on dairy cows, omitting transgenerational fate and suckling beef-related physiological effects.
View Article and Find Full Text PDFThe aim of present study was to compare in vivo and post mortem methods for estimating the empty body (EB) and carcass chemical compositions of Simmental lactating and growing cattle. Indirect methods were calibrated against the direct post mortem reference determination of chemical compositions of EB and carcass, determined after grinding and analyzing the water, lipid, protein, mineral masses, and energy content. The indirect methods applied to 12 lactating cows and 10 of their offspring were ultrasound (US), half-carcass and 11th rib dual-energy X-ray absorptiometry (DXA) scans, subcutaneous and perirenal adipose cell size (ACS), and dissection of the 11th rib.
View Article and Find Full Text PDFPolychlorinated biphenyls (PCBs) and dibenzo-p-dioxins/dibenzofurans (PCDD/Fs) are bioaccumulative pollutants that endanger bovine food safety. Bioaccumulation depends, among others, on the physiological dynamics of the cow's reproductive cycle. However, recent studies have focused only on near steady-state situations.
View Article and Find Full Text PDFFood of animal origin accounts for >90% of the overall human exposure to polychlorinated biphenyls (PCBs). Food regulatory maximum levels help to control this exposure, but bovine meat has been found to be prone to exceed those occasionally. In order to ensure the chemical safety of bovine meat, the aim was to explore the dependency of the bioconcentration (BCF) and biotransfer (BTF) factor, and assimilation efficiency (AE) of PCBs on carcass lipid proportion and growth rate of beef cattle.
View Article and Find Full Text PDF