Social insects such as ants and bees are excellent navigators. To manage their daily routines bumblebees, as an example, must learn multiple locations in their environment, like flower patches and their nest. While navigating from one location to another, they mainly rely on vision.
View Article and Find Full Text PDFInsects are remarkable flyers and capable of navigating through highly cluttered environments. We tracked the head and thorax of bumblebees freely flying in a tunnel containing vertically oriented obstacles to uncover the sensorimotor strategies used for obstacle detection and collision avoidance. Bumblebees presented all the characteristics of active vision during flight by stabilizing their head relative to the external environment and maintained close alignment between their gaze and flightpath.
View Article and Find Full Text PDFOne persistent question in animal navigation is how animals follow habitual routes between their home and a food source. Our current understanding of insect navigation suggests an interplay between visual memories, collision avoidance and path integration, the continuous integration of distance and direction travelled. However, these behavioural modules have to be continuously updated with instantaneous visual information.
View Article and Find Full Text PDFBumblebees perform complex flight maneuvers around the barely visible entrance of their nest upon their first departures. During these flights bees learn visual information about the surroundings, possibly including its spatial layout. They rely on this information to return home.
View Article and Find Full Text PDFFront Behav Neurosci
January 2021
Animals coordinate their various body parts, sometimes in elaborate manners to swim, walk, climb, fly, and navigate their environment. The coordination of body parts is essential to behaviors such as, chasing, escaping, landing, and the extraction of relevant information. For example, by shaping the movement of the head and body in an active and controlled manner, flying insects structure their flights to facilitate the acquisition of distance information.
View Article and Find Full Text PDFAnimals that move through complex habitats must frequently contend with obstacles in their path. Humans and other highly cognitive vertebrates avoid collisions by perceiving the relationship between the layout of their surroundings and the properties of their own body profile and action capacity. It is unknown whether insects, which have much smaller brains, possess such abilities.
View Article and Find Full Text PDFReturning home is a crucial task accomplished daily by many animals, including humans. Because of their tiny brains, insects, like bees or ants, are good study models for efficient navigation strategies. Bees and ants are known to rely mainly on learned visual information about the nest surroundings to pinpoint their barely visible nest-entrance.
View Article and Find Full Text PDFA number of insects fly over long distances below the natural canopy, where the physical environment is highly cluttered consisting of obstacles of varying shape, size and texture. While navigating within such environments, animals need to perceive and disambiguate environmental features that might obstruct their flight. The most elemental aspect of aerial navigation through such environments is gap identification and 'passability' evaluation.
View Article and Find Full Text PDF