Helical structures are ubiquitous in biological materials and often serve a structural purpose. Bioinspired helical materials can be challenging to synthesize and rarely reach the degree of hierarchy of their natural counterparts. Here we report the first example of particles synthesized by direct emulsification of polypeptides found to display spiral morphologies in the dry state.
View Article and Find Full Text PDFOwing to its rod-like α-helical secondary structure, the synthetic polypeptide poly(γ-benzyl-l-glutamate) (PBlG) can form physical and thermoreversible gels in helicogenic solvents such as toluene. The versatility of PBlG can be increased by introducing functionalizable comonomers, such as allylglycine (AG). In this work we examined the secondary structure of PBlG and a series of statistical poly(γ-benzyl-l-glutamate-co-allylglycine) copolypeptides, varying in composition and chain length, by circular dichroism (CD), Fourier-transform infrared (FTIR) and Raman spectroscopy, and wide-angle X-ray scattering (WAXS).
View Article and Find Full Text PDFStable commercial primary ammonium chlorides were combined with tertiary amines to initiate the controlled ring opening polymerisation of amino acid N-carboxyanhydrides to yield polypeptides with defined end group structure, predetermined molar mass and narrow molar mass distribution.
View Article and Find Full Text PDF