Publications by authors named "Charlotte Cousin"

We present two datasets composed of high frequency sensors data, vertical profiles and laboratory chemical analysis data, acquired during two different aquatic mesocosm experiments performed at the OLA ("Long-term observation and experimentation for lake ecosystems") facility at the UMR CARRTEL in Thonon les Bains, on the French shore of Lake Geneva. The DOMLAC experiment lasted 3 weeks (4-21 October 2021) and aimed to simulate predicted climate scenarios (i.e.

View Article and Find Full Text PDF

Reversible protein phosphorylation on serine, threonine, and tyrosine (Ser/Thr/Tyr) residues plays a critical role in regulation of vital processes in the cell. Despite of considerable progress in our understanding of the role of this modification in bacterial physiology, the dynamics of protein phosphorylation during bacterial growth has rarely been systematically addressed. In addition, little is known about in vivo substrates of bacterial Ser/Thr/Tyr kinases and phosphatases.

View Article and Find Full Text PDF
Article Synopsis
  • Scientists created a special test to learn how a tiny green alga called Chlamydomonas reinhardtii moves starch around when it doesn't have nitrogen.
  • They looked at how different factors like lack of nutrients and changes from light to dark affect mutant strains of the alga.
  • About a third of these mutant strains had changes in important genes for breaking down starch, while the rest were missing unknown functions that could help the alga move starch differently.
View Article and Find Full Text PDF

In this review, we address some recent developments in the field of bacterial protein phosphorylation, focusing specifically on serine/threonine and tyrosine kinases. We present an overview of recent studies outlining the scope of physiological processes that are regulated by phosphorylation, ranging from cell cycle, growth, cell morphology, to metabolism, developmental phenomena, and virulence. Specific emphasis is placed on Mycobacterium tuberculosis as a showcase organism for serine/threonine kinases, and Bacillus subtilis to illustrate the importance of protein phosphorylation in developmental processes.

View Article and Find Full Text PDF

Protein phosphorylation pathways emerge as large and interconnected networks, involving mutually activating protein kinases, kinases acting as network nodes by phosphorylating different substrates, and cross-talk of phosphorylation with other post-translational modifications. The complexity of these networks clearly necessitates the use of systems biology approaches. Phosphoproteomics represents the basis for detection of phosphoproteins and phosphorylation sites, but it must be combined with transcriptomics and interactomics in attempts to build in silico phosphorylation networks.

View Article and Find Full Text PDF