Publications by authors named "Charlotte Caine"

Article Synopsis
  • Researchers discovered a variant of the Hspa8 chaperone in model mice that significantly improved lifespan, motor function, and neuromuscular health in SMA-affected mice.
  • The study revealed that Hspa8 influences SMN2 splicing and promotes a crucial chaperone complex formation for synaptic stability, shedding light on the mechanisms behind motor neuron degeneration in SMA.
View Article and Find Full Text PDF

Homozygous mutations in the aromatic l-amino acid decarboxylase (AADC) gene result in a severe depletion of its namesake protein, triggering a debilitating and often fatal form of infantile Parkinsonism known as AADC deficiency. AADC deficient patients fail to produce normal levels of the monoamine neurotransmitters dopamine and serotonin, and suffer a multi-systemic disorder characterized by movement abnormalities, developmental delay and autonomic dysfunction; an absolute loss of dopamine is generally considered incompatible with life. There is no optimal treatment for AADC deficiency and few truly good models in which to investigate disease mechanisms or develop and refine therapeutic strategies.

View Article and Find Full Text PDF

Spinal muscular atrophy (SMA) is a common and often fatal neuromuscular disorder caused by low levels of the Survival Motor Neuron (SMN) protein. Amongst the earliest detectable consequences of SMN deficiency are profound defects of the neuromuscular junctions (NMJs). In model mice these synapses appear disorganized, fail to mature and are characterized by poorly arborized nerve terminals.

View Article and Find Full Text PDF

Myogenesis of indirect flight muscles (IFMs) in Drosophila melanogaster follows a well-defined cellular developmental scheme. During embryogenesis, a set of cells, the Adult Muscle Precursors (AMPs), are specified. These cells will become proliferating myoblasts during the larval stages which will then give rise to the adult IFMs.

View Article and Find Full Text PDF