Bisphenol (BP) structural analogues of BPA are widely used. Previous studies showed similar effects of BPA and BPS on reproduction in several species including human. We hypothesised that the similar effects of several bisphenols (BPs) could accumulate in granulosa cells (GCs) and affects steroidogenesis.
View Article and Find Full Text PDFThe reactivity and selectivity of non-heme Fe complexes as oxidation catalysts can be substantially modified by alteration of the ligand backbone or introduction of various substituents. In comparison with the hexadentate ligand N,N,N',N'-tetrakis(pyridin-2-ylmethyl)ethane-1,2-diamine (TPEN), N,N'-bis[1-(pyridin-2-yl)ethyl]-N,N'-bis(pyridin-2-ylmethyl)ethane-1,2-diamine ( L ) has a methyl group on two of the four picolyl positions. Fe complexation by L yields two diastereomeric complexes with very similar structures, which only differ in the axial/equatorial positions occupied by the methylated pyridyl groups.
View Article and Find Full Text PDFA coordinatively unsaturated Fe complex bearing a pentadentate ligand (N,N',N'-tris(2-pyridyl-methyl)-1,2-diaminoethane) functionalized with a cyclic disulfide group has been prepared in order to graft reactive metal entities as self-assembled monolayers (SAMs) on gold electrodes. Prior to grafting, exogenous ligand exchange has been investigated by cyclic voltammetry (CV) in solution, showing that the nature of the first coordination sphere (N)Fe-X (X = Cl, OTf, MeCN, acetone) can be tuned, thanks to the control of the chemical conditions. The Fe complex has been immobilized on gold electrodes by spontaneous (passive) adsorption as well as by an electro-assisted method.
View Article and Find Full Text PDFIn the present work we describe the synthesis and study of a Ru-Fe chromophore-catalyst assembly designed to perform the light-induced activation of an iron bound water molecule and subsequent photo-driven oxidation of a substrate. Using a series of spectroscopic techniques, we demonstrate that excitation of the chromophore unit with 450 nm light, in the presence of a sacrificial electron acceptor, triggers a cascade of electron transfers leading to the formation of a high valent iron(iv)-oxo center from an iron(ii)-bound water molecule. The activity of this catalytic center is illustrated by the oxidation of triphenyl phosphine.
View Article and Find Full Text PDF