In eukaryotes, the high-mobility-group (HMG) nuclear factors are highly conserved throughout evolution and are divided into three families, including HGMB, characterized by an HMG box domain. Some HMGB factors are DNA structure specific and preferentially interact with distorted DNA sequences, trigger DNA bending, and hence facilitate the binding of nucleoprotein complexes that in turn activate or repress transcription. In Plasmodium falciparum, two HMGB factors were predicted: PfHMGB1 and PfHMGB2.
View Article and Find Full Text PDFDuring the complex life cycle of Plasmodium falciparum, divided between mosquito and human hosts, the regulation of morphologic changes implies a fine control of transcriptional regulation. Transcriptional control, however, and in particular its molecular actors, transcription factors and regulatory motifs, are as yet poorly described in Plasmodium. In order to decipher the molecular mechanisms implicated in transcriptional regulation, a transcription factor belonging to the tryptophan cluster family was studied.
View Article and Find Full Text PDFDuring the complex life cycle of Plasmodium falciparum, through mosquito and human, the erythrocytic cycle is responsible for malarial disease and transmission. The regulation of events that occur during parasite development, such as proliferation and differentiation, implies a fine control of transcriptional activities that in turn governs the expression profiles of sets of genes. Pathways that underline gametocyte commitment are yet poorly understood even though kinases and transcription factors have been assumed to play a crucial role in this event.
View Article and Find Full Text PDF