The inhibition of the protein function for therapeutic applications remains challenging despite progress these past years. While the targeting application of molecularly imprinted polymer are in their infancy, no use was ever made of their magnetic hyperthermia properties to damage proteins when they are coupled to magnetic nanoparticles. Therefore, we have developed a facile and effective method to synthesize magnetic molecularly imprinted polymer nanoparticles using the green fluorescent protein (GFP) as the template, a bulk imprinting of proteins combined with a grafting approach onto maghemite nanoparticles.
View Article and Find Full Text PDFMagnetic nanoparticles coated with protein-specific molecularly imprinted polymers (MIPs) are receiving increasing attention thanks to their binding abilities, robustness, and easy synthesis compared to their natural analogues also able to target proteins, such as antibodies or aptamers. Acting as tailor-made recognition systems, protein-specific MIPs can be used in many in vivo nanomedicine applications, such as targeted drug delivery, biosensing, and tissue engineering. Nonetheless, studies on their biocompatibility and long-term fate in biological environments are almost nonexistent, although these questions have to be addressed before considering clinical applications.
View Article and Find Full Text PDFMagnetic hyperthermia which exploits the heat generated by magnetic nanoparticles (MNPs) when exposed to an alternative magnetic field (AMF) is now in clinical trials for the treatment of cancers. However, this thermal therapy requires a high amount of MNPs in the tumor to be efficient. On the contrary the hot spot local effect refers to the use of specific temperature profile at the vicinity of nanoparticles for heating with minor to no long-range effect.
View Article and Find Full Text PDFProtein imprinted polymers have received a lot of interest in the past few years because of their applications as tailor-made receptors for biomacromolecules. Generally, the preparation of these polymers requires numerous and time-consuming steps. But their coupling with magnetic nanoparticles simplifies and speeds up the synthesis of these materials.
View Article and Find Full Text PDFBulk imprinting of proteins was used combined with a grafting approach onto maghemite nanoparticles to develop a faster and simpler polymerization method for the synthesis of magnetic protein imprinted polymers with very high adsorption capacities and very strong affinity constants.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
December 2015
Melting in two dimensions can successfully be explained with the Kosterlitz-Thouless-Halperin-Nelson-Young (KTHNY) scenario which describes the formation of the high-symmetry phase with the thermal activation of topological defects within an (ideally) infinite monodomain. With all state variables being well defined, it should hold also as freezing scenario where oppositely charged topological defects annihilate. The Kibble-Zurek mechanism, on the other hand, shows that spontaneous symmetry breaking alongside a continuous phase transition cannot support an infinite monodomain but leads to polycrystallinity.
View Article and Find Full Text PDF