Background: Gait difficulties in Parkinson's disease have been related to problems shifting the center of gravity forward. We previously showed reduced forward stepping latencies for people with Parkinson's disease after one session of adaptation to upward visual shifts, which produces downward motor after-effects and potentially shifts the center of gravity forward. Here we tested if repeated prism adaptation improved gait and postural control in Parkinson's disease through a parallel, double-blind, randomized, sham-controlled trial.
View Article and Find Full Text PDFChromosome segregation errors in human oocytes are the leading cause of birth defects, and the risk of aneuploid pregnancy increases dramatically as women age. Accurate segregation demands that sister chromatid cohesion remain intact for decades in human oocytes, and gradual loss of the original cohesive linkages established in fetal oocytes is proposed to be a major cause of age-dependent segregation errors. Here we demonstrate that maintenance of meiotic cohesion in Drosophila oocytes during prophase I requires an active rejuvenation program, and provide mechanistic insight into the molecular events that underlie rejuvenation.
View Article and Find Full Text PDFFor at least 5% of all clinically recognized human pregnancies, meiotic segregation errors give rise to zygotes with the wrong number of chromosomes. Although most aneuploid fetuses perish in utero, trisomy in liveborns is the leading cause of mental retardation. A large percentage of human trisomies originate from segregation errors during female meiosis I; such errors increase in frequency with maternal age.
View Article and Find Full Text PDF