Publications by authors named "Charlotta Tiberg"

Soil contaminants may restrict soil functions. A promising soil remediation method is amendment with biochar, which has the potential to both adsorb contaminants and improve soil health. However, effects of biochar amendment on soil-plant nitrogen (N) dynamics and N cycling microbial guilds in contaminated soils are still poorly understood.

View Article and Find Full Text PDF

Arsenic (As) is carcinogenic and of major concern in groundwater. We collected sediment material from a contaminated anoxic aquifer in Sweden and investigated the immobilization of As by four commercial zero-valent iron (ZVI) particles. Solid-phase As and Fe speciation was assessed using X-ray absorption spectroscopy (XAS) and solution-phase As speciation using chromatographic separation.

View Article and Find Full Text PDF

While geogenic arsenic (As) contamination of aquifers have been intensively investigated across the world, the mobilization and transport of As from anthropogenic sources have received less scientific attention, despite emerging evidence of poor performance of widely used risk assessment models. In this study we hypothesize that such poor model performance is largely due to insufficient attention to heterogeneous subsurface properties, including the hydraulic conductivity K and the solid-liquid partition (K), as well as neglect of laboratory-to-field scaling effects. Our multi-method investigation includes i) inverse transport modelling, ii) in-situ measurements of As concentrations in paired samples of soil and groundwater, and iii) batch equilibrium experiments combined with (iv) geochemical modelling.

View Article and Find Full Text PDF

Extraction of soil samples with dilute CaCl solution in a routinely performed batch test has potential to be used in site-specific assessment of ecotoxicological risks at metal-contaminated sites. Soil extracts could potentially give a measure of the concentration of bioavailable metals in the soil solution, thereby including effects of soil properties and contaminant "aging." We explored the possibility of using a 0.

View Article and Find Full Text PDF

Millions of tons of bottom ash (BA) is generated from incineration of industrial and municipal solid waste each year within EU. The magnitude of leaching of metals like Cu and Zn is critical for hazard and risk assessment of these ashes. Although speciation of metals is a key factor to understand and predict metal leaching, speciation of Cu and Zn in BA is not well known.

View Article and Find Full Text PDF

Phosphate competes with arsenate for sorption sites on poorly crystalline iron and aluminum (hydr)oxides. The competition has implications e.g.

View Article and Find Full Text PDF

Contaminants in the soil may threaten soil functions (SFs) and, in turn, hinder the delivery of ecosystem services (ES). A framework for ecological risk assessments (ERAs) within the APPLICERA - APPLICable site-specific Environmental Risk Assessment research project promotes assessments that consider other soil quality parameters than only contaminant concentrations. The developed framework is: (i) able to differentiate the effects of contamination on SFs from the effects of other soil qualities essential for soil biota; and (ii) provides a robust basis for improved soil quality management in remediation projects.

View Article and Find Full Text PDF

While metal sorption mechanisms have been studied extensively for soil surface horizons, little information exists for subsoils, for example Spodosol Bs horizons. Here the sorption of cadmium(II), copper(II) and lead(II) to seven Bs horizons from five sites was studied. Extended X-ray absorption fine structure (EXAFS) spectroscopy showed that cadmium(II) and lead(II) were bound as inner-sphere complexes to organic matter.

View Article and Find Full Text PDF

Hypothesis: Phosphate influences the sorption of metals to iron (hydr)oxides. An enhanced formation of inner-sphere complexes on the (hydr)oxide surface can be attributed to electrostatic interactions and/or to changes in metal coordination on the iron (hydr)oxide surface. Phosphate was expected to increase cadmium(II) sorption on ferrihydrite.

View Article and Find Full Text PDF

Sulphate adsorption and desorption can delay the response in soil acidity against changes in acid input. Here we evaluate the use of an extended Freundlich equation for predictions of pH-dependent SO4 adsorption and desorption in low-ionic strength soil systems. Five B horizons from Spodosols were subjected to batch equilibrations at low ionic strength at different pHs and dissolved SO4 concentrations.

View Article and Find Full Text PDF