An important concern for the use of antibodies in various applications, such as western blot (WB) or immunohistochemistry (IHC), is specificity. This calls for systematic validations using well-designed conditions. Here, we have analyzed 13 000 antibodies using western blot with lysates from human cell lines, tissues, and plasma.
View Article and Find Full Text PDFA new and flexible technology for high throughput analysis of antibody specificity and affinity is presented. The method is based on microfluidics and takes advantage of compact disks (CDs) in which the centrifugal force moves fluids through microstructures containing immobilized metal affinity chromatography columns. Analyses are performed as a sandwich assay, where antigen is captured to the column via a genetically attached His6-tag.
View Article and Find Full Text PDFAntibody-based proteomics provides a powerful approach for the functional study of the human proteome involving the systematic generation of protein-specific affinity reagents. We used this strategy to construct a comprehensive, antibody-based protein atlas for expression and localization profiles in 48 normal human tissues and 20 different cancers. Here we report a new publicly available database containing, in the first version, approximately 400,000 high resolution images corresponding to more than 700 antibodies toward human proteins.
View Article and Find Full Text PDFA high stringency protocol, suitable for systematic purification of polyclonal antibodies, is described. The procedure is designed to allow the generation of target protein-specific antibodies suitable for functional annotation of proteins. Antibodies were generated by immunization with recombinantly produced affinity-tagged target proteins.
View Article and Find Full Text PDFProtein-protein interactions play crucial roles in various biological pathways and functions. Therefore, the characterization of protein levels and also the network of interactions within an organism would contribute considerably to the understanding of life. The availability of the human genome sequence has created a range of new possibilities for biomedical research.
View Article and Find Full Text PDFHere we describe an amplification method for global transcript analysis. The strategy relies on amplification of cDNA tags (signature tags) achieved by random fragmentation of the cDNAs to short tags of similar length, isolation of the 3' ends and then PCR amplification of the 3'-end signature tag population. This method minimizes biased amplification that may occur during parallel amplification of long and short templates.
View Article and Find Full Text PDFBiotechnol Appl Biochem
December 2003
A novel, improved dual bacterial-expression system, designed for large-scale generation of high-quality polyclonal antibody preparations intended for proteomics research, is presented. The concept involves parallel expression of cDNA-encoded proteins, as a fusion with two different tags in two separate vector systems. Both systems enable convenient blotting procedures for expression screening on crude bacterial cell cultures and single-step affinity purification under denaturing conditions.
View Article and Find Full Text PDFHere we show that an affinity proteomics strategy using affinity-purified antibodies raised against recombinant human protein fragments can be used for chromosome-wide protein profiling. The approach is based on affinity reagents raised toward bioinformatics-designed protein epitope signature tags corresponding to unique regions of individual gene loci. The genes of human chromosome 21 identified by the genome efforts were investigated, and the success rates for de novo cloning, protein production, and antibody generation were 85, 76, and 56%, respectively.
View Article and Find Full Text PDFWe describe a novel method for transcript profiling based on high-throughput parallel sequencing of signature tags using a non-gel-based microtiter plate format. The method relies on the identification of cDNA clones by pyrosequencing of the region corresponding to the 3'-end of the mRNA preceding the poly(A) tail. Simultaneously, the method can be used for gene discovery, since tags corresponding to unknown genes can be further characterized by extended sequencing.
View Article and Find Full Text PDF