Decellularized matrices are an attractive choice of scaffold in regenerative medicine as they can provide the necessary extracellular matrix (ECM) components, signals and mechanical properties. Various detergent-based protocols have already been proposed for decellularization of skeletal muscle tissue. However, a proper comparison is difficult due to differences in species, muscle origin and sample sizes.
View Article and Find Full Text PDFPurpose: The purpose of this study was to describe the immunoarchitecture of normal extraocular muscles (EOMs) in terms of presence, distribution, and organization of various immune cells.
Methods: We performed unilateral orbital exenterations in six fresh human cadavers from elderly patients, followed by dissection of the medial, lateral, superior and inferior rectus, superior and inferior oblique, and superior palpebral levator muscle in their entirety. We further cross sectioned each EOM in an anterior, central, and posterior third.
A wide range of synthetic and natural biomaterials is available for skeletal muscle tissue engineering. One class of natural biomaterials consists of the extracellular matrix (ECM) from donor skeletal muscle. To obtain this ECM, the cellular compartment must be completely removed while retaining the native composition and ultrastructure of the tissue as much as possible.
View Article and Find Full Text PDFNerve autograft is the gold standard technique to repair critical nerve defects, but efficient alternatives are needed. The present study evaluated the suitability of our novel Roosens-based (RSN) decellularized peripheral nerve allografts (DPNAs) in the repair of 10-mm sciatic nerve defect in rats at the functional and histological levels after 12 weeks. These DPNAs were compared with the autograft technique (AUTO) and Sondell (SD) or Hudson (HD) based DPNAs.
View Article and Find Full Text PDFTissue engineering is an emerging strategy for the development of nerve substitutes for peripheral nerve repair. Especially decellularized peripheral nerve allografts are interesting alternatives to replace the gold standard autografts. In this study, a novel decellularization protocol was qualitatively and quantitatively evaluated by histological, biochemical, ultrastructural and mechanical methods and compared to the protocol described by Sondell et al.
View Article and Find Full Text PDFNowadays, the high incidence of peripheral nerve injuries and the low success ratio of surgical treatments are driving research to the generation of novel alternatives to repair critical nerve defects. In this sense, tissue engineering has emerged as a possible alternative with special attention to decellularization techniques. Tissue decellularization offers the possibility to obtain a cell-free, natural extracellular matrix (ECM), characterized by an adequate 3D organization and proper molecular composition to repair different tissues or organs, including peripheral nerves.
View Article and Find Full Text PDFFor most tissue engineering applications, surface modification and sterilization of polymers are critical aspects determining the implant success. The first part of this study is thus dedicated to modifying polycaprolactone (PCL) surfaces via plasma treatment using a medium pressure dielectric barrier discharge, while the second part focuses on the sterilization of plasma-modified PCL. Chemical and physical surface changes are examined making use of water contact angle goniometry (WCA), x-ray photoelectron spectroscopy and atomic force microscopy.
View Article and Find Full Text PDFIn meniscus tissue engineering strategies, enhancing the matrix quality of the neomeniscal tissue is important. When the differentiated phenotype of fibrochondrocytes is lost, the quality of the matrix becomes compromised. The objective of this study was to produce uniform fibrochondrocyte micro-aggregates with desirable phenotype and tissue homogeneity in large quantities using a simple and reproducible method.
View Article and Find Full Text PDF