Epoxy resins coatings are commonly found in corrosion protection coatings but the presence of water can affect their adhesion to the substrate, often weakening the adhesion of the coating to the solid, reducing its efficiency. Nevertheless, small amounts of water can enhance the epoxy/substrate interactions. In this work, the interphase region of an epoxy precursor and metal oxide substrates is investigated using molecular simulations and it is found that water accumulates between the epoxy layer and the solid substrate.
View Article and Find Full Text PDFHypothesis: Interphase properties in composites, adhesives and protective coatings can be predicted on the basis of interfacial interactions between polymeric precursor molecules and the inorganic surface during network formation. The strength of molecular interactions is expected to determine local segmental mobility (polymer glass transition temperature, Tg) and cure degree.
Experiments: Conventional analysis techniques and atomic force microscopy coupled with infrared (AFM-IR) are applied to nanocomposite specimens to precisely characterise the epoxy-amine/iron oxide interphase, whilst molecular dynamics simulations are applied to identify the molecular interactions underpinning its formation.
Epoxy-based coatings are widely used in a range of industries as protective coatings. The performance of the final solid-polymer system is dependent on the physicochemical properties of the interface and the interaction between the polymer and the solid substrate. In this study, we perform atomistic molecular dynamics simulations to investigate the binding of a common component in epoxy resins, diglycidyl ether of bisphenol A (DGEBA), on two iron oxide surfaces, hematite (0001) and magnetite (100), and investigate the effect of surface hydroxylation on the binding energy.
View Article and Find Full Text PDFDissipative Particle Dynamics (DPD) is a powerful mesoscopic modelling technique that is routinely used to predict complex fluid morphology and structural properties. While its ability to quickly scan the conformational space is well known, it is unclear if DPD can correctly calculate the viscosity of complex fluids. In this work, we estimate the viscosity of several unentangled polymer solutions using both the Einstein and Green-Kubo formulas.
View Article and Find Full Text PDFThe scission energy is the difference in free energy between two hemispherical caps and the cylindrical region of a wormlike micelle. This energy difference determines the logarithm of the average micelle length, which affects several macroscopic properties such as the viscosity of viscoelastic fluids. Here we use a recently published method by Wang et al.
View Article and Find Full Text PDFWe present a Monte Carlo simulation study of chiral nematic liquid crystals confined in torus-shaped and cylindrical cavities. For an achiral nematic with planar degenerate anchoring confined to a toroidal or cylindrical cavity, the ground state is defect free, with an untwisted director field. As chirality is introduced, the ground state remains defect free but the director field becomes twisted within the cavity.
View Article and Find Full Text PDFHypothesis: Sodium Laurylethoxysulfate (SLES) is a fundamental ingredient in a wide range of surfactant products and the mapping of its various mesophases is pivotal in predicting the liquid viscosity. Here we want to show that the use of properly parameterised coarse-grained molecular models can provide structural information of the surfactant solutions not easily achievable through experimental characterization.
Experiments: We use a novel set of Dissipative Particle Dynamics parameters specifically developed for surfactant molecules to construct the first phase diagram of pure SLES in sodium chloride/water solutions.
We present a numerical study of the relative solubility of cholesterol in octanol and water. Our calculations allow us to compare the accuracy of the computed values of the excess chemical potential of cholesterol for several widely used water models (SPC, TIP3P, and TIP4P). We compute the excess solvation free energies by means of a cavity-based method [L.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
January 2015
We present a systematic Monte Carlo simulation study of thin nematic and cholesteric shells with planar anchoring using an off-lattice model. The results obtained using the simple model correspond with previously published results for lattice-based systems, with the number, type, and position of defects observed dependent on the shell thickness with four half-strength defects in a tetrahedral arrangement found in very thin shells and a pair of defects in a bipolar (boojum) configuration observed in thicker shells. A third intermediate defect configuration is occasionally observed for intermediate thickness shells, which is stabilized in noncentrosymmetric shells of nonuniform thickness.
View Article and Find Full Text PDF